npj: 机器学习—界面热阻的预测

2019 年 5 月 29 日 知社学术圈

海归学者发起的公益学术平台

分享信息,整合资源

交流学术,偶尔风月

在两种不同材料的界面上作热传输是微/纳电子、光子和声子器件中的关键问题。影响两种材料之间的界面热阻(ITR)的因素种类较多,使得ITR预测成为一个高维数学问题,因而有必要探索使用机器学习来经济有效地加以解决。

来自日本物质材料研究所的华人科学家徐一斌女士领导的团队,通过进一步考虑基于化学、物理和材料特性的界面条件,使用机器学习对界面热阻作了精确的预测,其预测结果的相关系数R高达0.96。他们将描述符分为三种符集:性能描述符、化合物描述符和过程描述符。在80,282种材料体系中,界面热阻预测准确度最高的前100名中,三种模型中至少有两个模型重复预测了25种材料体系的结果。25种材料体系有两个主要组:Bi /氧化物和AsI3 /碲化物或碘化物。其中,Bi / Si实现了0.16  Wm−1K−1的超低导热率。所预测的高界面热阻材料,被证明是绝热或热电应用的潜在候选者。通过限制新材料的搜索空间,如高温环境的高熔点,界面热阻预测模型还可扩展到更具体的热需求。该策略可以加速热利用的新材料开发。


该文近期发表于npj Computational Materials 5: 56 (2019),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。



Predicting interfacial thermal resistance by machine learning 


Yen-Ju Wu, Lei Fang & Yibin Xu 


Various factors affect the interfacial thermal resistance (ITR) between two materials, making ITR prediction a high-dimensional mathematical problem. Machine learning is a cost-effective method to address this. Here, we report ITR predictive models based on experimental data. The physical, chemical, and material properties of ITR are categorized into three sets of descriptors, and three algorithms are used for the models. hose descriptors assist the models in reducing the mismatch between predicted and experimental values and reaching high predictive performance of 96%. Over 80,000 material systems composed of 293 materials were inputs for predictions. Among the top-100 high-ITR predictions by the three different algorithms, 25 material systems are repeatedly predicted by at least two algorithm. One of the 25 material systems, Bi/Si achieved the ultra-low thermal conductivity in our previous work. We believe that the predicted high-ITR material systems are potential candidates for thermoelectric applications. This study proposed a strategy for material exploration for thermal management by means of machine learning.


扩展阅读

 

npj: 绝缘体研究发现新物相

npj: 2D材料的自旋相干—超长自旋相干时间

npj: 2D材料的极高热导和反常应力效应

npj: 发现系列特殊复合拓扑节点线

npj: 聚合物如何让纳米颗粒变得有序?

本文系网易新闻·网易号“各有态度”特色内容

媒体转载联系授权请看下方

登录查看更多
0

相关内容

机器学习速查手册,135页pdf
专知会员服务
335+阅读 · 2020年3月15日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
23+阅读 · 2020年2月23日
金融时序预测中的深度学习方法:2005到2019
专知会员服务
165+阅读 · 2019年12月4日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
45+阅读 · 2019年9月24日
自动化机器学习(AutoML)文献/工具/项目资源大列表分享
深度学习与NLP
6+阅读 · 2019年9月2日
智能配用电大数据分析-概率性负荷预测
NE电气
5+阅读 · 2019年7月5日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
已删除
将门创投
9+阅读 · 2018年12月19日
npj: 机器学习添视觉—材料缺陷快分析
知社学术圈
6+阅读 · 2018年8月18日
机器学习预测世界杯:巴西夺冠
新智元
5+阅读 · 2018年6月11日
机器学习必知的15大框架
云栖社区
16+阅读 · 2017年12月10日
52 个有用的机器学习与预测API
北京思腾合力科技有限公司
3+阅读 · 2017年10月26日
推荐系统经典技术:矩阵分解
LibRec智能推荐
8+阅读 · 2017年10月10日
Arxiv
108+阅读 · 2020年2月5日
Bivariate Beta LSTM
Arxiv
5+阅读 · 2019年10月7日
Arxiv
5+阅读 · 2019年4月8日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
自动化机器学习(AutoML)文献/工具/项目资源大列表分享
深度学习与NLP
6+阅读 · 2019年9月2日
智能配用电大数据分析-概率性负荷预测
NE电气
5+阅读 · 2019年7月5日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
已删除
将门创投
9+阅读 · 2018年12月19日
npj: 机器学习添视觉—材料缺陷快分析
知社学术圈
6+阅读 · 2018年8月18日
机器学习预测世界杯:巴西夺冠
新智元
5+阅读 · 2018年6月11日
机器学习必知的15大框架
云栖社区
16+阅读 · 2017年12月10日
52 个有用的机器学习与预测API
北京思腾合力科技有限公司
3+阅读 · 2017年10月26日
推荐系统经典技术:矩阵分解
LibRec智能推荐
8+阅读 · 2017年10月10日
相关论文
Arxiv
108+阅读 · 2020年2月5日
Bivariate Beta LSTM
Arxiv
5+阅读 · 2019年10月7日
Arxiv
5+阅读 · 2019年4月8日
Arxiv
12+阅读 · 2018年9月5日
Top
微信扫码咨询专知VIP会员