5G 产业链:基站天线和小基站爆发潜力大

2018 年 10 月 19 日 人工智能学家


来源:国信证券


5G宏基站数的翻倍增长及技术演进带来基站天线成倍增长空间。


5G关键性能指标十倍的增长需要基站数翻倍增长以支撑。5G的三个关键的效率需求包括频谱利用效率、能耗效率和成本效率。


具体来说,5G在频谱效率、能源效率和成本效率的提升需求在十倍甚至百倍以上,关键技术加速催化。


如下所示,5G的性能指标主要从用户体验速率(bps)、连接数密度(1/Km2)、端到端时延(ms)等方面提出要求。

其中,用户体验速率(bps)从4G时代的10Mbit/s升级至100Mbit/s,这对5G网络覆盖能力提出了全面升级的要求。


根据理论值计算,在越高的频谱上传播信号,信号损耗越高,所需要的基站数也需要越高。从连续覆盖角度来看,5G的基站数量可能是4G的1.5-2倍。


截止2017年底,我国已搭建了328万座4G宏基站,按照1.5倍的保守值计算,5G基站数至少在500万座。

大规模天线(massiveMIMO)技术放大基站天线需求。从2G到4G,基站天线经历了一体化宏基站、基带处理单元和射频拉远模块分离、MIMO天线、有源天线、MassiveMIMO等发展阶段。


随着4.5G和5G时代的到来,MassiveMIMO技术被引入,直接导致基站天线发展的三个趋势:1)无源天线向有源天线发展2)光纤替代馈线3)RRH(射频拉远头)和天线部分集成。


随着通信网络向5G的不断演进,阵列天线(多天线空分复用)、多波束天线(网络致密化)和多频段天线(频谱扩展)将成为未来基站天线发展的主要类型。

MIMO能够充分利用空间资源,通过在底层物理设备中安装多个发射与接收天线,使得信号能够在多个天线之间实现多发多收,在不增加频谱资源与发射功率的基础之上,改善通信质量,拓宽通信信道,是后4G时代的关键通信技术。


目前,MIMO在LTE的R11、R12中得到了不断的完善与加强,在传统的MIMO仅支持8个天线端口的基础上,美国贝尔实验室2010年提出了MassiveMIMO,利用多根天线形成的空间自由度及有效的多径分量,极大增加了频谱利用率和可靠性。


基站天线投资比例在整个无线网络中仅占2%左右,但是其对基站通信系统中网络指标的影响超过5成,因此,也一直在通信技术演进的过程中扮演着重要的角色。


大规模MIMO在系统频谱效率、用户体验、传输可靠性的提升上提供了重要保证,同时能够支撑的网络容量是8×8MIMO天线的10倍以上,能够较好的满足未来的海量连接需求和几何级别的流量需求增长。


一般而言,普通的基站需要配置3面天线,4G基站则需要配置2×2(即2根接收天线和2跟发射天线)面,未来随着5G落地,MassiveMIMO基站(128,256根甚至更多天线)的大规模应用将促使基站天线数量增长(排除有源无源的差别后,单价相对会下降)。


在移动通信系统升级之际,基础上游的基站天线需求有望倍增,相应市场会快速放大,如下所示,在4G建设起始的2013-2014年,国内天线市场规模迅速增长,而5G来临之际的2020-2021年,这一增长弹性将进一步放大。

此外,5G对毫米波的技术要求,也促进了移动终端和基站端天线的更新换代和数量的增长。天线向有源方向发展将带动单个天线的价值提升。


根据我们的测算,5G时期全球基站天线市场规模或达7000亿人民币。


根据上述数据,14~17年的国内4G建设高峰期,总天线市场国模约320亿,对应新建的320万左右的4G基站,约一个基站的天线价值量在1万左右(3副天线)。


同期海外市场规模约为130亿美元,对应200万左右4G基站。而到了5G时代,5G基站数将是4G的1.5~2倍。


而5G基站天线的单体价值量或是4G的3~4倍,两项叠加(暂不考虑单基站天线数量的增加),5G时期的天线总规模或是4G的4.5~8倍,对应5000~9000亿人民币的全球市场,取中间值为7000亿。

当前阶段,4G低频重耕及海外建设需求弥补资本开支空窗期,基站天线市场景气度依旧较高。


自从2007年澳大利亚运营商首次关闭CDMA网络服务,全球掀起了频谱重耕的热潮,如AT&T、澳洲电信、新加坡Singtel和StarHub等也将关闭GSM网络。据Ovum预测,到2020年左右,2G网络将在全球范围内全面消失。


目前,我国频谱重耕条件逐渐成熟,随着4G覆盖的完善和渗透,2G和3G用户向4G用户转换已到后期阶段,此外政策面和核心网也对频谱重耕作出了积极回应。


频谱重耕将推动运营商通信基站大范围的改造升级,带动基站侧更新换代的需求增长。

2017年,随着中国联通展开对900M频段的重耕以及中国电信对800M频段进行重耕,导致国内基站天线市场下滑幅度并不大。


2018年,中国电信进入800M重耕深化年,重点发力“五高一地”实现精准建设;中国联通在完成混改后将加大900M重耕执行力度,给基站天线市场提供流量较强的支撑。


而发展中国家4G建设方兴未艾,海外基站天线市场空间广阔。


实际上,亚太、中东、北非等发展中国家目前处于4G建设期中,相应需求景气度高,以印度为例,其最大的电信运营商BhartiAirtel近年来的资本开支连续上涨,4G建设处于高峰期。相应地,全球基站天线市场空间依旧较大。


此外,三大运营商均开展NB-IOT网络的建设,对于相应天线的需求旺盛。如中国移动2017年完成111万面NB-IOT天线招标,对应其40万NB-IOT基站建设的目标。


随着联通和电信都将建成与移动规模相当的全国覆盖的NB-IOT网络,预期2018、2019年将迎来大规模招标。


并且,4G后周期时代,多频天线常用来满足低频重耕以及网络演进需求,相应的智能天线单价较高,也一定程度上填补了数量上需求的下滑。


如2018年9月份中移动开展“4+4+8+8”独立电调智能天线产品集中采购(第一批次),项目预估采购规模约14.09万面。


“4488”天线可同时支持900M、1800M、FA频段8T8R以及D频段8T8R,最大程度节省天面空间及TCO,但其造价也较高,在6000~8000元之间,而常规的4G基站天线价格在3000~4000元。因此中移动的这一采购总额超9亿,提振了行业的信心。


整体来看,当前阶段,国内基站天线市场规模有望保持平稳,并在2019年下半年5G建设逐步开始后,迎来新一轮上升。


5G超密集组网技术刺激小基站千亿新增市场


5G性能提升还需依赖超密集组网提升空间复用度。


为了解决未来移动数据流量增长1000倍以及用户体验速率提升10-100倍的需求,除了增加频谱带宽以及采用先进的无线技术提升频谱利用率以外,最为有效的办法依旧是加密小区基站的部署从而提升空间复用度。


传统的无线通信方式通常采用小区分裂的方式部署基站,但是随着覆盖半径的逐步减小,小区分裂很难进行,需要在室内外热点区域密集部署小功率的基站,即超密集组网。


超密集组网的典型应用场景包括:办公室、密集住宅、密集街区、校园、大型集会、体育场、地铁、公寓等等。


基站按照覆盖半径和发射功率可以分为宏基站、微基站、皮基站和飞基站。其中宏基站的发射功率在几十瓦以上,覆盖半径在2km以上。


而热点区域覆盖则更适合小基站,包括微基站、皮基站和飞基站,功率只要毫瓦到瓦级别,覆盖半径在十米到几十米之间。小基站的硬件成本远低于宏基站,更适合于室内或者室外大数据热点区域。

随着小区部署密度的增加,超密集组网将面临许多新的技术挑战,如干扰、移动性、站址、传输资源以及部署成本等,因此如何灵活部署与维护、干扰管理和抑制、接入和回传、联合设计以及小区虚拟化技术等是超密集组网的重要研究方向。


电磁波频率越高、波长便越短、衍射能力也越弱,同时由于涉及穿透能力,信号在穿透过程中会发生能量损耗,因此高频电磁波传输距离近,传输损耗大,相关基站设备需密集部署,基站体积的减小对天线和滤波器集成化要求也较高。


超密集组网打开小基站千亿市场空间。


一方面由于微型化的基站方便部署且易携带,可以根据使用场所灵活布设,且同时功耗低、成本低,容易满足未来物联网海量连接、海量部署的特点,小基站具有填补网络覆盖漏洞并提升网络服务质量的特点。


另一方面,未来尺寸小、多制式、异构接入的基站将有更多的发展空间,推广是趋势,甚至有望替代现有WiFi的单一无线制式路由器。


从这个角度看,未来小基站存在机会。5G应用毫米波的最大场景就在室内,使得消费者对于大带宽需求上升,从而提升小基站需求。根据市场研究机构ABIResearch最新调查显示,2021年全球室内小型基站市场规模将达到18亿美元。


根据我们的测算,5G小基站的市场规模或为2500亿元。


假设单个宏基站的覆盖距离为300米,其覆盖面积内需要用小基站对相应市内热点区域进行覆盖,以小基站覆盖半径30m估算,该区域需要100个小基站,而热点区域可能只占到覆盖面积的25%,因此需要约25个小基站。


而按照5G基站数是4G的1.5倍计算,国内5G基站数约为500万,则小基站数量理论需求为1.25亿个,按照小基站2000元/台的均价计算,市场空间为2500亿人民币。


小基站已在全国21省市商用,运营商规模集采即将到来。如下图所示,4G时代,全国已有21省市试水小基站,但整体采购量都不大,预计整体采购量不超过50万台。


此前中国移动曾于2015年进行过一次集采,规模大概为9.6万个。


时隔三年,2018年8月,中国移动再次开启皮基站集中采购,本次集采超87万台,以4G拓展型皮基站为主,超过历年省级采购总和。预计5G时代,这一采购数量将继续大幅攀升。


未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

登录查看更多
1

相关内容

LTE,长期演进技术(英语:Long Term Evolution,常简写为 LTE),商业宣传上通常被称作 4G LTE,但事实上是 3.5G 下 HSDPA 迈向 4G 的过度版本。也曾经被俗称为 3.9G,直到 2010 年 12 月 6 日国际电信联盟把 LTE Advanced 正式定义为4G。 LTE 是应用于手机及数据卡终端的高速无线通讯标准,该标准基于旧有的 GSM/EDGE 和 UMTS/HSPA 网络技术,并使用调制技术提升网络容量及速度。 该标准由3GPP(第三代合作伙伴计划)于 2008 年第四季度于 Release 8 版本中首次提出,并在 Release 9 版本中进行少许改良。
新时期我国信息技术产业的发展
专知会员服务
68+阅读 · 2020年1月18日
报告 | 2020中国5G经济报告,100页pdf
专知会员服务
97+阅读 · 2019年12月29日
【德勤】中国人工智能产业白皮书,68页pdf
专知会员服务
294+阅读 · 2019年12月23日
2019中国硬科技发展白皮书 193页
专知会员服务
77+阅读 · 2019年12月13日
【大数据白皮书 2019】中国信息通信研究院
专知会员服务
133+阅读 · 2019年12月12日
【白皮书】“物联网+区块链”应用与发展白皮书-2019
专知会员服务
90+阅读 · 2019年11月13日
2019年中国人工智能基础数据服务行业白皮书
艾瑞咨询
26+阅读 · 2019年9月16日
5G全产业链发展分析报告
行业研究报告
11+阅读 · 2019年6月7日
2018年物业管理行业深度研究报告
行业研究报告
7+阅读 · 2019年5月17日
2018年边缘计算行业研究报告
行业研究报告
11+阅读 · 2019年4月15日
云游戏行业发展趋势分析报告
行业研究报告
13+阅读 · 2019年3月24日
【物联网】物联网产业现状与技术发展
产业智能官
15+阅读 · 2018年12月17日
边缘计算:万物互联时代新型计算模型
计算机研究与发展
12+阅读 · 2017年5月19日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关VIP内容
新时期我国信息技术产业的发展
专知会员服务
68+阅读 · 2020年1月18日
报告 | 2020中国5G经济报告,100页pdf
专知会员服务
97+阅读 · 2019年12月29日
【德勤】中国人工智能产业白皮书,68页pdf
专知会员服务
294+阅读 · 2019年12月23日
2019中国硬科技发展白皮书 193页
专知会员服务
77+阅读 · 2019年12月13日
【大数据白皮书 2019】中国信息通信研究院
专知会员服务
133+阅读 · 2019年12月12日
【白皮书】“物联网+区块链”应用与发展白皮书-2019
专知会员服务
90+阅读 · 2019年11月13日
相关资讯
2019年中国人工智能基础数据服务行业白皮书
艾瑞咨询
26+阅读 · 2019年9月16日
5G全产业链发展分析报告
行业研究报告
11+阅读 · 2019年6月7日
2018年物业管理行业深度研究报告
行业研究报告
7+阅读 · 2019年5月17日
2018年边缘计算行业研究报告
行业研究报告
11+阅读 · 2019年4月15日
云游戏行业发展趋势分析报告
行业研究报告
13+阅读 · 2019年3月24日
【物联网】物联网产业现状与技术发展
产业智能官
15+阅读 · 2018年12月17日
边缘计算:万物互联时代新型计算模型
计算机研究与发展
12+阅读 · 2017年5月19日
Top
微信扫码咨询专知VIP会员