State-of-the-art deep learning methods have shown a remarkable capacity to model complex data domains, but struggle with geospatial data. In this paper, we introduce SpaceGAN, a novel generative model for geospatial domains that learns neighbourhood structures through spatial conditioning. We propose to enhance spatial representation beyond mere spatial coordinates, by conditioning each data point on feature vectors of its spatial neighbours, thus allowing for a more flexible representation of the spatial structure. To overcome issues of training convergence, we employ a metric capturing the loss in local spatial autocorrelation between real and generated data as stopping criterion for SpaceGAN parametrization. This way, we ensure that the generator produces synthetic samples faithful to the spatial patterns observed in the input. SpaceGAN is successfully applied for data augmentation and outperforms compared to other methods of synthetic spatial data generation. Finally, we propose an ensemble learning framework for the geospatial domain, taking augmented SpaceGAN samples as training data for a set of ensemble learners. We empirically show the superiority of this approach over conventional ensemble learning approaches and rivaling spatial data augmentation methods, using synthetic and real-world prediction tasks. Our findings suggest that SpaceGAN can be used as a tool for (1) artificially inflating sparse geospatial data and (2) improving generalization of geospatial models.


翻译:在本文中,我们引入了SpaceGAN,这是一个全新的地理空间域的基因模型,通过空间调节来学习邻里结构。我们提议,通过调整空间邻居地貌矢量的每个数据点,加强空间代表性,使其空间结构能够更灵活地代表空间结构。为了克服培训趋同问题,我们使用一个衡量尺度,捕捉当地空间数据之间真实数据与生成数据间的空间自动关系的损失,作为停止SpaceGAN 超称的标准。这样,我们确保生成器生成符合投入中观察到的空间模式的合成样本。与合成空间数据生成的其他方法相比,SpaceGAN成功地用于数据增强和超模版。最后,我们提出了地理空间域的混合学习框架,将增强的空间GAN样本作为一组共同学习者的培训数据。我们从经验上展示了这一方法优于常规混合学习方法的优越性,与空间数据扩增方法相匹配,并使用合成和真实的地理空间空间数据生成模型,我们建议利用合成和真实的地理空间空间模型来改进一般的地理空间空间空间空间空间空间空间空间空间模型。我们可以将发现作为用于空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间变现的模型。

0
下载
关闭预览

相关内容

在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
57+阅读 · 2019年12月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
谷歌足球游戏环境使用介绍
CreateAMind
31+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
31+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员