Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a \textit{Relational Memory Core} (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.

点赞 0
阅读1+

Current work on multimodal machine translation (MMT) has suggested that the visual modality is either unnecessary or only marginally beneficial. We posit that this is a consequence of the very simple, short and repetitive sentences used in the only available dataset for the task (Multi30K), rendering the source text sufficient as context. In the general case, however, we believe that it is possible to combine visual and textual information in order to ground translations. In this paper we probe the contribution of the visual modality to state-of-the-art MMT models by conducting a systematic analysis where we partially deprive the models from source-side textual context. Our results show that under limited textual context, models are capable of leveraging the visual input to generate better translations. This contradicts the current belief that MMT models disregard the visual modality because of either the quality of the image features or the way they are integrated into the model.

点赞 0
阅读1+

We develop hierarchically quantized efficient embedding representations for similarity-based search and show that this representation provides not only the state of the art performance on the search accuracy but also provides several orders of speed up during inference. The idea is to hierarchically quantize the representation so that the quantization granularity is greatly increased while maintaining the accuracy and keeping the computational complexity low. We also show that the problem of finding the optimal sparse compound hash code respecting the hierarchical structure can be optimized in polynomial time via minimum cost flow in an equivalent flow network. This allows us to train the method end-to-end in a mini-batch stochastic gradient descent setting. Our experiments on Cifar100 and ImageNet datasets show the state of the art search accuracy while providing several orders of magnitude search speedup respectively over exhaustive linear search over the dataset.

点赞 0
阅读1+

Facial motion retargeting is an important problem in both computer graphics and vision, which involves capturing the performance of a human face and transferring it to another 3D character. Learning 3D morphable model (3DMM) parameters from 2D face images using convolutional neural networks is common in 2D face alignment, 3D face reconstruction etc. However, existing methods either require an additional face detection step before retargeting or use a cascade of separate networks to perform detection followed by retargeting in a sequence. In this paper, we present a single end-to-end network to jointly predict the bounding box locations and 3DMM parameters for multiple faces. First, we design a novel multitask learning framework that learns a disentangled representation of 3DMM parameters for a single face. Then, we leverage the trained single face model to generate ground truth 3DMM parameters for multiple faces to train another network that performs joint face detection and motion retargeting for images with multiple faces. Experimental results show that our joint detection and retargeting network has high face detection accuracy and is robust to extreme expressions and poses while being faster than state-of-the-art methods.

点赞 0
阅读3+

Recently,there has been a lot of interest in building compact models for video classification which have a small memory footprint (<1 GB). While these models are compact, they typically operate by repeated application of a small weight matrix to all the frames in a video. E.g. recurrent neural network based methods compute a hidden state for every frame of the video using a recurrent weight matrix. Similarly, cluster-and-aggregate based methods such as NetVLAD, have a learnable clustering matrix which is used to assign soft-clusters to every frame in the video. Since these models look at every frame in the video, the number of floating point operations (FLOPs) is still large even though the memory footprint is small. We focus on building compute-efficient video classification models which process fewer frames and hence have less number of FLOPs. Similar to memory efficient models, we use the idea of distillation albeit in a different setting. Specifically, in our case, a compute-heavy teacher which looks at all the frames in the video is used to train a compute-efficient student which looks at only a small fraction of frames in the video. This is in contrast to a typical memory efficient Teacher-Student setting, wherein both the teacher and the student look at all the frames in the video but the student has fewer parameters. Our work thus complements the research on memory efficient video classification. We do an extensive evaluation with three types of models for video classification,viz.(i) recurrent models (ii) cluster-and-aggregate models and (iii) memory-efficient cluster-and-aggregate models and show that in each of these cases, a see-it-all teacher can be used to train a compute efficient see-very-little student. We show that the proposed student network can reduce the inference time by 30% and the number of FLOPs by approximately 90% with a negligible drop in the performance.

点赞 0
阅读1+

The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, agile management of network resource to maximize user experience, and extraction of fine-grained real-time analytics. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques to help managing the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research.

点赞 0
阅读1+

Our goal is for a robot to execute a previously unseen task based on a single video demonstration of the task. The success of our approach relies on the principle of transferring knowledge from seen tasks to unseen ones with similar semantics. More importantly, we hypothesize that to successfully execute a complex task from a single video demonstration, it is necessary to explicitly incorporate compositionality to the model. To test our hypothesis, we propose Neural Task Graph (NTG) Networks, which use task graph as the intermediate representation to modularize the representations of both the video demonstration and the derived policy. We show this formulation achieves strong inter-task generalization on two complex tasks: Block Stacking in BulletPhysics and Object Collection in AI2-THOR. We further show that the same principle is applicable to real-world videos. We show that NTG can improve data efficiency of few-shot activity understanding in the Breakfast Dataset.

点赞 0
阅读1+

This paper presents a method of learning qualitatively interpretable models in object detection using popular two-stage region-based ConvNet detection systems (i.e., R-CNN). R-CNN consists of a region proposal network and a RoI (Region-of-Interest) prediction network.By interpretable models, we focus on weakly-supervised extractive rationale generation, that is learning to unfold latent discriminative part configurations of object instances automatically and simultaneously in detection without using any supervision for part configurations. We utilize a top-down hierarchical and compositional grammar model embedded in a directed acyclic AND-OR Graph (AOG) to explore and unfold the space of latent part configurations of RoIs. We propose an AOGParsing operator to substitute the RoIPooling operator widely used in R-CNN, so the proposed method is applicable to many state-of-the-art ConvNet based detection systems. The AOGParsing operator aims to harness both the explainable rigor of top-down hierarchical and compositional grammar models and the discriminative power of bottom-up deep neural networks through end-to-end training. In detection, a bounding box is interpreted by the best parse tree derived from the AOG on-the-fly, which is treated as the extractive rationale generated for interpreting detection. In learning, we propose a folding-unfolding method to train the AOG and ConvNet end-to-end. In experiments, we build on top of the R-FCN and test the proposed method on the PASCAL VOC 2007 and 2012 datasets with performance comparable to state-of-the-art methods.

点赞 0
阅读2+
Top