Deep learning is a subset of a broader family of machine learning methods based on learning data representations. These models are inspired by human biological nervous systems, even if there are various differences pertaining to the structural and functional properties of biological brains. The elementary constituents of deep learning models are neurons, which can be considered as functions that receive inputs and produce an output that is a weighted sum of the inputs fed through an activation function. Several models of neurons were proposed in the course of the years that are all based on learnable parameters called weights. In this paper we present a new type of artificial neuron, the double-weight neuron,characterized by additional learnable weights that lead to a more complex and accurate system. We tested a feed-forward and convolutional neural network consisting of double-weight neurons on the MNIST dataset, and we tested a convolution network on the CIFAR-10 dataset. For MNIST we find a $\approx 4\%$ and $\approx 1\%$ improved classification accuracy, respectively, when compared to a standard feed-forward and convolutional neural network built with the same sets of hyperparameters. For CIFAR-10 we find a $\approx 12\%$ improved classification accuracy. We thus conclude that this novel artificial neuron can be considered as a valuable alternative to common ones.


翻译:深层学习是基于学习数据表述的较广的机器学习方法系列的一部分。 这些模型受人类生物神经系统启发,即使生物大脑的结构和功能特性存在各种差异。 深层学习模型的基本成分是神经元,可以被视为接收投入的功能,并产生一个通过激活功能投入的加权总和的输出。 若干神经元模型是在这些年中提出的,所有这些模型都以可学习的参数为基础,称为权重。 在本文中,我们提出了一种新的人造神经元类型,即双重重量神经神经神经神经元,通过更多可学习的重量进行分解,导致更复杂和精确的系统。我们测试了一个向前进和向进进神经网络,在MNIST数据集中由双量神经元组成,我们在CIFAR-10数据集中测试了一个卷动网络。 对于MNIST,我们发现一个$4 ⁇ 和$\approx 1 ⁇ ++$。 美元的分类精度,与标准向前和向进进神经神经神经元网络相比,我们用更精度和进进进的神经神经神经神经神经神经网络 网络,这样可以以10号的普通的精度计算。

0
下载
关闭预览

相关内容

MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
【UAI 2019 Tutorials】深度学习数学(Mathematics of Deep Learning)
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
11+阅读 · 2018年7月31日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
11+阅读 · 2018年7月31日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
8+阅读 · 2018年5月15日
Top
微信扫码咨询专知VIP会员