** Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field. **

** Skeleton-based action recognition is an important task that requires the adequate understanding of movement characteristics of a human action from the given skeleton sequence. Recent studies have shown that exploring spatial and temporal features of the skeleton sequence is vital for this task. Nevertheless, how to effectively extract discriminative spatial and temporal features is still a challenging problem. In this paper, we propose a novel Attention Enhanced Graph Convolutional LSTM Network (AGC-LSTM) for human action recognition from skeleton data. The proposed AGC-LSTM can not only capture discriminative features in spatial configuration and temporal dynamics but also explore the co-occurrence relationship between spatial and temporal domains. We also present a temporal hierarchical architecture to increases temporal receptive fields of the top AGC-LSTM layer, which boosts the ability to learn the high-level semantic representation and significantly reduces the computation cost. Furthermore, to select discriminative spatial information, the attention mechanism is employed to enhance information of key joints in each AGC-LSTM layer. Experimental results on two datasets are provided: NTU RGB+D dataset and Northwestern-UCLA dataset. The comparison results demonstrate the effectiveness of our approach and show that our approach outperforms the state-of-the-art methods on both datasets. **

** We present a novel model called OCGAN for the classical problem of one-class novelty detection, where, given a set of examples from a particular class, the goal is to determine if a query example is from the same class. Our solution is based on learning latent representations of in-class examples using a denoising auto-encoder network. The key contribution of our work is our proposal to explicitly constrain the latent space to exclusively represent the given class. In order to accomplish this goal, firstly, we force the latent space to have bounded support by introducing a tanh activation in the encoder's output layer. Secondly, using a discriminator in the latent space that is trained adversarially, we ensure that encoded representations of in-class examples resemble uniform random samples drawn from the same bounded space. Thirdly, using a second adversarial discriminator in the input space, we ensure all randomly drawn latent samples generate examples that look real. Finally, we introduce a gradient-descent based sampling technique that explores points in the latent space that generate potential out-of-class examples, which are fed back to the network to further train it to generate in-class examples from those points. The effectiveness of the proposed method is measured across four publicly available datasets using two one-class novelty detection protocols where we achieve state-of-the-art results. **

** Being able to predict the crowd flows in each and every part of a city, especially in irregular regions, is strategically important for traffic control, risk assessment, and public safety. However, it is very challenging because of interactions and spatial correlations between different regions. In addition, it is affected by many factors: i) multiple temporal correlations among different time intervals: closeness, period, trend; ii) complex external influential factors: weather, events; iii) meta features: time of the day, day of the week, and so on. In this paper, we formulate crowd flow forecasting in irregular regions as a spatio-temporal graph (STG) prediction problem in which each node represents a region with time-varying flows. By extending graph convolution to handle the spatial information, we propose using spatial graph convolution to build a multi-view graph convolutional network (MVGCN) for the crowd flow forecasting problem, where different views can capture different factors as mentioned above. We evaluate MVGCN using four real-world datasets (taxicabs and bikes) and extensive experimental results show that our approach outperforms the adaptations of state-of-the-art methods. And we have developed a crowd flow forecasting system for irregular regions that can now be used internally. **

** Parkinson's Disease (PD) is one of the most prevalent neurodegenerative diseases that affects tens of millions of Americans. PD is highly progressive and heterogeneous. Quite a few studies have been conducted in recent years on predictive or disease progression modeling of PD using clinical and biomarkers data. Neuroimaging, as another important information source for neurodegenerative disease, has also arisen considerable interests from the PD community. In this paper, we propose a deep learning method based on Graph Convolutional Networks (GCN) for fusing multiple modalities of brain images in relationship prediction which is useful for distinguishing PD cases from controls. On Parkinson's Progression Markers Initiative (PPMI) cohort, our approach achieved $0.9537\pm 0.0587$ AUC, compared with $0.6443\pm 0.0223$ AUC achieved by traditional approaches such as PCA. **

** In a graph convolutional network, we assume that the graph $G$ is generated with respect to some observation noise. We make small random perturbations $\Delta{}G$ of the graph and try to improve generalization. Based on quantum information geometry, we can have quantitative measurements on the scale of $\Delta{}G$. We try to maximize the intrinsic scale of the permutation with a small budget while minimizing the loss based on the perturbed $G+\Delta{G}$. Our proposed model can consistently improve graph convolutional networks on semi-supervised node classification tasks with reasonable computational overhead. We present two different types of geometry on the manifold of graphs: one is for measuring the intrinsic change of a graph; the other is for measuring how such changes can affect externally a graph neural network. These new analytical tools will be useful in developing a good understanding of graph neural networks and fostering new techniques. **

** We present FAST NAVIGATOR, a general framework for action decoding, which yields state-of-the-art results on the recent Room-to-Room (R2R) Vision-and-Language navigation challenge of Anderson et. al. (2018). Given a natural language instruction and photo-realistic image views of a previously unseen environment, the agent must navigate from a source to a target location as quickly as possible. While all of current approaches make local action decisions or score entire trajectories with beam search, our framework seamlessly balances local and global signals when exploring the environment. Importantly, this allows us to act greedily, but use global signals to backtrack when necessary. Our FAST framework, applied to existing models, yielded a 17% relative gain over the previous state-of-the-art, an absolute 6% gain on success rate weighted by path length (SPL). **

** Graph Convolutional Networks(GCNs) play a crucial role in graph learning tasks, however, learning graph embedding with few supervised signals is still a difficult problem. In this paper, we propose a novel training algorithm for Graph Convolutional Network, called Multi-Stage Self-Supervised(M3S) Training Algorithm, combined with self-supervised learning approach, focusing on improving the generalization performance of GCNs on graphs with few labeled nodes. Firstly, a Multi-Stage Training Framework is provided as the basis of M3S training method. Then we leverage DeepCluster technique, a popular form of self-supervised learning, and design corresponding aligning mechanism on the embedding space to refine the Multi-Stage Training Framework, resulting in M3S Training Algorithm. Finally, extensive experimental results verify the superior performance of our algorithm on graphs with few labeled nodes under different label rates compared with other state-of-the-art approaches. **

Multi-GCN: Graph Convolutional Networks for Multi-View Networks, with Applications to Global Poverty

** With the rapid expansion of mobile phone networks in developing countries, large-scale graph machine learning has gained sudden relevance in the study of global poverty. Recent applications range from humanitarian response and poverty estimation to urban planning and epidemic containment. Yet the vast majority of computational tools and algorithms used in these applications do not account for the multi-view nature of social networks: people are related in myriad ways, but most graph learning models treat relations as binary. In this paper, we develop a graph-based convolutional network for learning on multi-view networks. We show that this method outperforms state-of-the-art semi-supervised learning algorithms on three different prediction tasks using mobile phone datasets from three different developing countries. We also show that, while designed specifically for use in poverty research, the algorithm also outperforms existing benchmarks on a broader set of learning tasks on multi-view networks, including node labelling in citation networks. **