Knowledge graphs have evolved rapidly in recent years and their usefulness has been demonstrated in many artificial intelligence tasks. However, knowledge graphs often have lots of missing facts. To solve this problem, many knowledge graph embedding models have been developed to populate knowledge graphs and these have shown outstanding performance. However, knowledge graph embedding models are so-called black boxes, and the user does not know how the information in a knowledge graph is processed and the models can be difficult to interpret. In this paper, we utilize graph patterns in a knowledge graph to overcome such problems. Our proposed model, the {\it graph pattern entity ranking model} (GRank), constructs an entity ranking system for each graph pattern and evaluates them using a ranking measure. By doing so, we can find graph patterns which are useful for predicting facts. Then, we perform link prediction tasks on standard datasets to evaluate our GRank method. We show that our approach outperforms other state-of-the-art approaches such as ComplEx and TorusE for standard metrics such as HITS@{\it n} and MRR. Moreover, our model is easily interpretable because the output facts are described by graph patterns.


翻译:近些年来,知识图表迅速演变,在许多人工智能任务中都显示出了它们的实用性。然而,知识图表往往有许多缺失的事实。为了解决这一问题,已经开发了许多知识图表嵌入模型以填充知识图表,这些模型显示了杰出的性能。然而,知识图形嵌入模型是所谓的黑盒,用户不知道知识图表中的信息是如何处理的,模型可能难以解释的。在本文中,我们用知识图表中的图解模式来克服这些问题。我们提议的模型,即千石图式实体排名模型}(Grank),为每个图表模式建立一个实体排名系统,并使用排序尺度来评估它们。通过这样做,我们可以找到有助于预测事实的图形模式。然后,我们在标准数据集上执行预测任务,以评价我们的Grank方法。我们显示,我们的方法比ComplEx和TorusE等其他最先进的方法,例如HIT ⁇ it n}和MRRR。此外,我们的模型很容易被解释,因为通过图表描述的输出模式是容易的。

1
下载
关闭预览

相关内容

17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
167+阅读 · 2020年2月13日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
15+阅读 · 2019年9月11日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员