Deep learning techniques are increasingly being considered for geological applications where -- much like in computer vision -- the challenges are characterized by high-dimensional spatial data dominated by multipoint statistics. In particular, a novel technique called generative adversarial networks has been recently studied for geological parametrization and synthesis, obtaining very impressive results that are at least qualitatively competitive with previous methods. The method obtains a neural network parametrization of the geology -- so-called a generator -- that is capable of reproducing very complex geological patterns with dimensionality reduction of several orders of magnitude. Subsequent works have addressed the conditioning task, i.e. using the generator to generate realizations honoring spatial observations (hard data). The current approaches, however, do not provide a parametrization of the conditional generation process. In this work, we propose a method to obtain a parametrization for direct generation of conditional realizations. The main idea is to simply extend the existing generator network by stacking a second inference network that learns to perform the conditioning. This inference network is a neural network trained to sample a posterior distribution derived using a Bayesian formulation of the conditioning task. The resulting extended neural network thus provides the conditional parametrization. Our method is assessed on a benchmark image of binary channelized subsurface, obtaining very promising results for a wide variety of conditioning configurations.


翻译:在地质应用方面,人们越来越多地考虑深层次的学习技术,在这种应用中,挑战的特点是以多点统计为主的高维空间数据。特别是,最近为地质对称和合成研究了一种叫作基因对抗网络的新技术,称为基因对抗网络,最近为地质对称和合成进行了研究,取得了非常令人印象深刻的成果,至少与以前的方法在质量上具有竞争力。该方法获得了地质学神经网络的匹配,即所谓的发电机,它能够产生非常复杂的地质模式,其维度降低几个数量级。随后的工程已经解决了调节任务,即利用发电机实现空间观测(硬数据)的实现。然而,目前的方法并没有提供有条件生成过程的配对。在这项工作中,我们提出了一种方法,为直接生成有条件的实现而获得配对称的配对。主要想法是仅仅通过堆放第二层推论网络来扩展现有的发电机网络,从而学会进行调节。这种推论网络是一个神经网络,经过训练,用来抽样后对从Bayesian制成的后台式配置(硬数据),因此,对我们的平质结构进行了扩展了一种基础调整。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
195+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Seeing What a GAN Cannot Generate
Arxiv
7+阅读 · 2019年10月24日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
7+阅读 · 2018年5月21日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
195+阅读 · 2019年9月30日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员