VAE requires the standard Gaussian distribution as a prior in the latent space. Since all codes tend to follow the same prior, it often suffers the so-called "posterior collapse". To avoid this, this paper introduces the class specific distribution for the latent code. But different from CVAE, we present a method for disentangling the latent space into the label relevant and irrelevant dimensions, $\bm{\mathrm{z}}_s$ and $\bm{\mathrm{z}}_u$, for a single input. We apply two separated encoders to map the input into $\bm{\mathrm{z}}_s$ and $\bm{\mathrm{z}}_u$ respectively, and then give the concatenated code to the decoder to reconstruct the input. The label irrelevant code $\bm{\mathrm{z}}_u$ represent the common characteristics of all inputs, hence they are constrained by the standard Gaussian, and their encoder is trained in amortized variational inference way, like VAE. While $\bm{\mathrm{z}}_s$ is assumed to follow the Gaussian mixture distribution in which each component corresponds to a particular class. The parameters for the Gaussian components in $\bm{\mathrm{z}}_s$ encoder are optimized by the label supervision in a global stochastic way. In theory, we show that our method is actually equivalent to adding a KL divergence term on the joint distribution of $\bm{\mathrm{z}}_s$ and the class label $c$, and it can directly increase the mutual information between $\bm{\mathrm{z}}_s$ and the label $c$. Our model can also be extended to GAN by adding a discriminator in the pixel domain so that it produces high quality and diverse images.


翻译:VAE 要求标准 Gausian 分布在隐藏空间中的前方 。 由于所有代码都倾向于遵循相同的前方, 它通常会受到所谓的“ 外层崩溃 ” 。 为避免这一点, 此文件会为潜层代码分别引入类别特定的分布 。 但与 CVAE 不同, 我们展示了一种方法, 将潜在空间分解为标签相关和无关的维度, $\ bm\ mathr{z{ z} 美元和 $\ bm\ mathr{ züu$, 用于一个单一输入。 由于所有代码都遵循相同的 标准 Gausian, 它们的编码都使用两个分离的编码来将输入输入 $\ bm_ 美元 的输入到 $m 美元 。 美元 美元 和 美元 美元 和 美元 美元 美元 的元中, 美元 和 美元 美元 的元中, 以 美元 美元 的元中, 和 以 美元 美元 元中 的元中, 元中, 元中, 元中, 元中, 以 元中

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
4+阅读 · 2018年4月10日
Arxiv
6+阅读 · 2018年3月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员