Latent factor models for recommender systems represent users and items as low dimensional vectors. Privacy risks of such systems have previously been studied mostly in the context of recovery of personal information in the form of usage records from the training data. However, the user representations themselves may be used together with external data to recover private user information such as gender and age. In this paper we show that user vectors calculated by a common recommender system can be exploited in this way. We propose the privacy-adversarial framework to eliminate such leakage of private information, and study the trade-off between recommender performance and leakage both theoretically and empirically using a benchmark dataset. An advantage of the proposed method is that it also helps guarantee fairness of results, since all implicit knowledge of a set of attributes is scrubbed from the representations used by the model, and thus can't enter into the decision making. We discuss further applications of this method towards the generation of deeper and more insightful recommendations.

点赞 0
阅读1+

Predicting pregnancy has been a fundamental problem in women's health for more than 50 years. Previous datasets have been collected via carefully curated medical studies, but the recent growth of women's health tracking mobile apps offers potential for reaching a much broader population. However, the feasibility of predicting pregnancy from mobile health tracking data is unclear. Here we develop four models -- a logistic regression model, and 3 LSTM models -- to predict a woman's probability of becoming pregnant using data from a women's health tracking app, Clue by BioWink GmbH. Evaluating our models on a dataset of 79 million logs from 65,276 women with ground truth pregnancy test data, we show that our predicted pregnancy probabilities meaningfully stratify women: women in the top 10% of predicted probabilities have a 89% chance of becoming pregnant over 6 menstrual cycles, as compared to a 27% chance for women in the bottom 10%. We develop a technique for extracting interpretable time trends from our deep learning models, and show these trends are consistent with previous fertility research. Our findings illustrate the potential that women's health tracking data offers for predicting pregnancy on a broader population; we conclude by discussing the steps needed to fulfill this potential.

点赞 0
阅读1+

Over the past 15 years, the volume, richness and quality of data collected from the combined social networking platforms has increased beyond all expectation, providing researchers from a variety of disciplines to use it in their research. Perhaps more impactfully, it has provided the foundation for a range of new products and services, transforming industries such as advertising and marketing, as well as bringing the challenges of sharing personal data into the public consciousness. But how to make sense of the ever-increasing volume of big social data so that we can better understand and improve the user experience in increasingly complex, data-driven digital systems. This link with usability and the user experience of data-driven system bridges into the wider field of HCI, attracting interdisciplinary researchers as we see the demand for consumer technologies, software and systems, as well as the integration of social networks into our everyday lives. The fact that the data largely posted on social networks tends to be textual, provides a further link to linguistics, psychology and psycholinguistics to better understand the relationship between human behaviours offline and online. In this thesis, we present a novel conceptual framework based on a complex digital system using collected longitudinal datasets to predict system status based on the personality traits and emotions extracted from text posted by users. The system framework was built using a dataset collected from an online scholarship system in which 2000 students had their digital behaviour and social network behaviour collected for this study. We contextualise this research project with a wider review and critical analysis of the current psycholinguistics, artificial intelligence and human-computer interaction literature, which reveals a gap of mapping and understanding digital profiling against system status.

点赞 0
阅读1+

Scientific documents rely on both mathematics and text to communicate ideas. Inspired by the topical correspondence between mathematical equations and word contexts observed in scientific texts, we propose a novel topic model that jointly generates mathematical equations and their surrounding text (TopicEq). Using an extension of the correlated topic model, the context is generated from a mixture of latent topics, and the equation is generated by an RNN that depends on the latent topic activations. To experiment with this model, we create a corpus of 400K equation-context pairs extracted from a range of scientific articles from arXiv, and fit the model using a variational autoencoder approach. Experimental results show that this joint model significantly outperforms existing topic models and equation models for scientific texts. Moreover, we qualitatively show that the model effectively captures the relationship between topics and mathematics, enabling novel applications such as topic-aware equation generation, equation topic inference, and topic-aware alignment of mathematical symbols and words.

点赞 0
阅读1+

The social media revolution has changed the way that brands interact with consumers. Instead of spending their advertising budget on interstate billboards, more and more companies are choosing to partner with so-called Internet "influencers" --- individuals who have gained a loyal following on online platforms for the high quality of the content they post. Unfortunately, it's not always easy for small brands to find the right influencer: someone who aligns with their corporate image and has not yet grown in popularity to the point of unaffordability. In this paper we sought to develop a system for brand-influencer matchmaking, harnessing the power and flexibility of modern machine learning techniques. The result is an algorithm that can predict the most fruitful brand-influencer partnerships based on the similarity of the content they post.

点赞 0
阅读1+

The Computing Community Consortium (CCC), along with the White House Office of Science and Technology Policy (OSTP), and the Association for the Advancement of Artificial Intelligence (AAAI), co-sponsored a public workshop on Artificial Intelligence for Social Good on June 7th, 2016 in Washington, DC. This was one of five workshops that OSTP co-sponsored and held around the country to spur public dialogue on artificial intelligence, machine learning, and to identify challenges and opportunities related to AI. In the AI for Social Good workshop, the successful deployments and the potential use of AI in various topics that are essential for social good were discussed, including but not limited to urban computing, health, environmental sustainability, and public welfare. This report highlights each of these as well as a number of crosscutting issues.

点赞 0
阅读1+

Which generative model is the most suitable for Continual Learning? This paper aims at evaluating and comparing generative models on disjoint sequential image generation tasks. We investigate how several models learn and forget, considering various strategies: rehearsal, regularization, generative replay and fine-tuning. We used two quantitative metrics to estimate the generation quality and memory ability. We experiment with sequential tasks on three commonly used benchmarks for Continual Learning (MNIST, Fashion MNIST and CIFAR10). We found that among all models, the original GAN performs best and among Continual Learning strategies, generative replay outperforms all other methods. Even if we found satisfactory combinations on MNIST and Fashion MNIST, training generative models sequentially on CIFAR10 is particularly instable, and remains a challenge. Our code is available online \footnote{\url{https://github.com/TLESORT/Generative\_Continual\_Learning}}.

点赞 0
阅读1+

The wide spread use of online recruitment services has led to information explosion in the job market. As a result, the recruiters have to seek the intelligent ways for Person Job Fit, which is the bridge for adapting the right job seekers to the right positions. Existing studies on Person Job Fit have a focus on measuring the matching degree between the talent qualification and the job requirements mainly based on the manual inspection of human resource experts despite of the subjective, incomplete, and inefficient nature of the human judgement. To this end, in this paper, we propose a novel end to end Ability aware Person Job Fit Neural Network model, which has a goal of reducing the dependence on manual labour and can provide better interpretation about the fitting results. The key idea is to exploit the rich information available at abundant historical job application data. Specifically, we propose a word level semantic representation for both job requirements and job seekers' experiences based on Recurrent Neural Network. Along this line, four hierarchical ability aware attention strategies are designed to measure the different importance of job requirements for semantic representation, as well as measuring the different contribution of each job experience to a specific ability requirement. Finally, extensive experiments on a large scale real world data set clearly validate the effectiveness and interpretability of the APJFNN framework compared with several baselines.

点赞 0
阅读1+

There has been much recent, exciting work on combining the complementary strengths of latent variable models and deep learning. Latent variable modeling makes it easy to explicitly specify model constraints through conditional independence properties, while deep learning makes it possible to parameterize these conditional likelihoods with powerful function approximators. While these "deep latent variable" models provide a rich, flexible frameworks for modeling many real-world phenomena, difficulties exist: deep parameterizations of conditional likelihoods usually make posterior inference intractable, and latent variable objectives often complicate backpropagation by introducing points of non-differentiability. This tutorial explores these issues in depth through the lens of variational inference.

点赞 0
阅读1+

Detecting epileptic seizure through analysis of the electroencephalography (EEG) signal becomes a standard method for the diagnosis of epilepsy. In a manual way, monitoring of long term EEG is tedious and error prone. Therefore, a reliable automatic seizure detection method is desirable. A critical challenge to automatic seizure detection is that seizure morphologies exhibit considerable variabilities. In order to capture essential seizure patterns, this paper leverages an attention mechanism and a bidirectional long short-term memory (BiLSTM) model to exploit both spatially and temporally discriminating features and account for seizure variabilities. The attention mechanism is to capture spatial features more effectively according to the contributions of brain areas to seizures. The BiLSTM model is to extract more discriminating temporal features in the forward and the backward directions. By accounting for both spatial and temporal variations of seizures, the proposed method is more robust across subjects. The testing results over the noisy real data of CHB-MIT show that the proposed method outperforms the current state-of-the-art methods. In both mixing-patients and cross-patient experiments, the average sensitivity and specificity are both higher while their corresponding standard deviations are lower than the methods in comparison.

点赞 0
阅读1+
Top