Weakly supervised data are widespread and have attracted much attention. However, since label quality is often difficult to guarantee, sometimes the use of weakly supervised data will lead to unsatisfactory performance, i.e., performance degradation or poor performance gains. Moreover, it is usually not feasible to manually increase the label quality, which results in weakly supervised learning being somewhat difficult to rely on. In view of this crucial issue, this paper proposes a simple and novel weakly supervised learning framework. We guide the optimization of label quality through a small amount of validation data, and to ensure the safeness of performance while maximizing performance gain. As validation set is a good approximation for describing generalization risk, it can effectively avoid the unsatisfactory performance caused by incorrect data distribution assumptions. We formalize this underlying consideration into a novel Bi-Level optimization and give an effective solution. Extensive experimental results verify that the new framework achieves impressive performance on weakly supervised learning with a small amount of validation data.


翻译:然而,由于标签质量往往难以保证,有时使用监督不力的数据会导致业绩不尽人意,即业绩退化或业绩增益不良;此外,手工提高标签质量通常不可行,造成监督不力的学习难以依赖;鉴于这一关键问题,本文件提出一个简单和新颖的、监督不力的学习框架;我们通过少量的验证数据指导标签质量的优化,并确保业绩安全,同时最大限度地提高业绩收益;由于鉴定套是描述一般化风险的良好近似值,因此可以有效地避免数据分配假设不正确造成的业绩不尽人意;我们将这一基本考虑正式化为新的双级优化,并提供有效的解决办法;广泛的实验结果核实,新框架在监督不力的学习上,以少量验证数据取得令人印象深刻的业绩。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员