Learned data models based on sparsity are widely used in signal processing and imaging applications. A variety of methods for learning synthesis dictionaries, sparsifying transforms, etc., have been proposed in recent years, often imposing useful structures or properties on the models. In this work, we focus on sparsifying transform learning, which enjoys a number of advantages. We consider multi-layer or nested extensions of the transform model, and propose efficient learning algorithms. Numerical experiments with image data illustrate the behavior of the multi-layer transform learning algorithm and its usefulness for image denoising. Multi-layer models provide better denoising quality than single layer schemes.

点赞 0
阅读1+

Background: Social media has the capacity to afford the healthcare industry with valuable feedback from patients who reveal and express their medical decision-making process, as well as self-reported quality of life indicators both during and post treatment. In prior work, [Crannell et. al.], we have studied an active cancer patient population on Twitter and compiled a set of tweets describing their experience with this disease. We refer to these online public testimonies as "Invisible Patient Reported Outcomes" (iPROs), because they carry relevant indicators, yet are difficult to capture by conventional means of self-report. Methods: Our present study aims to identify tweets related to the patient experience as an additional informative tool for monitoring public health. Using Twitter's public streaming API, we compiled over 5.3 million "breast cancer" related tweets spanning September 2016 until mid December 2017. We combined supervised machine learning methods with natural language processing to sift tweets relevant to breast cancer patient experiences. We analyzed a sample of 845 breast cancer patient and survivor accounts, responsible for over 48,000 posts. We investigated tweet content with a hedonometric sentiment analysis to quantitatively extract emotionally charged topics. Results: We found that positive experiences were shared regarding patient treatment, raising support, and spreading awareness. Further discussions related to healthcare were prevalent and largely negative focusing on fear of political legislation that could result in loss of coverage. Conclusions: Social media can provide a positive outlet for patients to discuss their needs and concerns regarding their healthcare coverage and treatment needs. Capturing iPROs from online communication can help inform healthcare professionals and lead to more connected and personalized treatment regimens.

点赞 0
阅读4+

Sentiment Analysis in Arabic is a challenging task due to the rich morphology of the language. Moreover, the task is further complicated when applied to Twitter data that is known to be highly informal and noisy. In this paper, we develop a hybrid method for sentiment analysis for Arabic tweets for a specific Arabic dialect which is the Saudi Dialect. Several features were engineered and evaluated using a feature backward selection method. Then a hybrid method that combines a corpus-based and lexicon-based method was developed for several classification models (two-way, three-way, four-way). The best F1-score for each of these models was (69.9,61.63,55.07) respectively.

点赞 0
阅读7+

Distributed word representations are widely used for modeling words in NLP tasks. Most of the existing models generate one representation per word and do not consider different meanings of a word. We present two approaches to learn multiple topic-sensitive representations per word by using Hierarchical Dirichlet Process. We observe that by modeling topics and integrating topic distributions for each document we obtain representations that are able to distinguish between different meanings of a given word. Our models yield statistically significant improvements for the lexical substitution task indicating that commonly used single word representations, even when combined with contextual information, are insufficient for this task.

点赞 0
阅读1+

In this paper, we propose a very concise deep learning approach for collaborative filtering that jointly models distributional representation for users and items. The proposed framework obtains better performance when compared against current state-of-art algorithms and that made the distributional representation model a promising direction for further research in the collaborative filtering.

点赞 0
阅读1+
Top