Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.

点赞 0
阅读4+

A 3D point cloud describes the real scene precisely and intuitively.To date how to segment diversified elements in such an informative 3D scene is rarely discussed. In this paper, we first introduce a simple and flexible framework to segment instances and semantics in point clouds simultaneously. Then, we propose two approaches which make the two tasks take advantage of each other, leading to a win-win situation. Specifically, we make instance segmentation benefit from semantic segmentation through learning semantic-aware point-level instance embedding. Meanwhile, semantic features of the points belonging to the same instance are fused together to make more accurate per-point semantic predictions. Our method largely outperforms the state-of-the-art method in 3D instance segmentation along with a significant improvement in 3D semantic segmentation. Code has been made available at: https://github.com/WXinlong/ASIS.

点赞 0
阅读3+

Deep learning has recently demonstrated its excellent performance for multi-view stereo (MVS). However, one major limitation of current learned MVS approaches is the scalability: the memory-consuming cost volume regularization makes the learned MVS hard to be applied to high-resolution scenes. In this paper, we introduce a scalable multi-view stereo framework based on the recurrent neural network. Instead of regularizing the entire 3D cost volume in one go, the proposed Recurrent Multi-view Stereo Network (R-MVSNet) sequentially regularizes the 2D cost maps along the depth direction via the gated recurrent unit (GRU). This reduces dramatically the memory consumption and makes high-resolution reconstruction feasible. We first show the state-of-the-art performance achieved by the proposed R-MVSNet on the recent MVS benchmarks. Then, we further demonstrate the scalability of the proposed method on several large-scale scenarios, where previous learned approaches often fail due to the memory constraint. Code is available at https://github.com/YoYo000/MVSNet.

点赞 0
阅读3+

In many applications requiring multiple inputs to obtain a desired output, if any of the input data is missing, it often introduces large amounts of bias. Although many techniques have been developed for imputing missing data, the image imputation is still difficult due to complicated nature of natural images. To address this problem, here we proposed a novel framework for missing image data imputation, called Collaborative Generative Adversarial Network (CollaGAN). CollaGAN converts an image imputation problem to a multi-domain images-to-image translation task so that a single generator and discriminator network can successfully estimate the missing data using the remaining clean data set. We demonstrate that CollaGAN produces the images with a higher visual quality compared to the existing competing approaches in various image imputation tasks.

点赞 0
阅读2+

We propose a 3D object detection method for autonomous driving by fully exploiting the sparse and dense, semantic and geometry information in stereo imagery. Our method, called Stereo R-CNN, extends Faster R-CNN for stereo inputs to simultaneously detect and associate object in left and right images. We add extra branches after stereo Region Proposal Network (RPN) to predict sparse keypoints, viewpoints, and object dimensions, which are combined with 2D left-right boxes to calculate a coarse 3D object bounding box. We then recover the accurate 3D bounding box by a region-based photometric alignment using left and right RoIs. Our method does not require depth input and 3D position supervision, however, outperforms all existing fully supervised image-based methods. Experiments on the challenging KITTI dataset show that our method outperforms the state-of-the-art stereo-based method by around 30% AP on both 3D detection and 3D localization tasks. Code will be made publicly available.

点赞 0
阅读3+

Biomedical image segmentation is an important task in many medical applications. Segmentation methods based on convolutional neural networks attain state-of-the-art accuracy; however, they typically rely on supervised training with large labeled datasets. Labeling datasets of medical images requires significant expertise and time, and is infeasible at large scales. To tackle the lack of labeled data, researchers use techniques such as hand-engineered preprocessing steps, hand-tuned architectures, and data augmentation. However, these techniques involve costly engineering efforts, and are typically dataset-specific. We present an automated data augmentation method for medical images. We demonstrate our method on the task of segmenting magnetic resonance imaging (MRI) brain scans, focusing on the one-shot segmentation scenario -- a practical challenge in many medical applications. Our method requires only a single segmented scan, and leverages other unlabeled scans in a semi-supervised approach. We learn a model of transforms from the images, and use the model along with the labeled example to synthesize additional labeled training examples for supervised segmentation. Each transform is comprised of a spatial deformation field and an intensity change, enabling the synthesis of complex effects such as variations in anatomy and image acquisition procedures. Augmenting the training of a supervised segmenter with these new examples provides significant improvements over state-of-the-art methods for one-shot biomedical image segmentation. Our code is available at https://github.com/xamyzhao/brainstorm.

点赞 0
阅读3+

This is an official pytorch implementation of Deep High-Resolution Representation Learning for Human Pose Estimation. In this work, we are interested in the human pose estimation problem with a focus on learning reliable high-resolution representations. Most existing methods recover high-resolution representations from low-resolution representations produced by a high-to-low resolution network. Instead, our proposed network maintains high-resolution representations through the whole process. We start from a high-resolution subnetwork as the first stage, gradually add high-to-low resolution subnetworks one by one to form more stages, and connect the mutli-resolution subnetworks in parallel. We conduct repeated multi-scale fusions such that each of the high-to-low resolution representations receives information from other parallel representations over and over, leading to rich high-resolution representations. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise. We empirically demonstrate the effectiveness of our network through the superior pose estimation results over two benchmark datasets: the COCO keypoint detection dataset and the MPII Human Pose dataset. The code and models have been publicly available at \url{https://github.com/leoxiaobin/deep-high-resolution-net.pytorch}.

点赞 0
阅读2+

This paper focuses on Bayesian Optimization - typically considered with continuous inputs - for discrete search input spaces, including integer, categorical or graph structured input variables. In Gaussian process-based Bayesian Optimization a problem arises, as it is not straightforward to define a proper kernel on discrete input structures, where no natural notion of smoothness or similarity could be provided. We propose COMBO, a method that represents values of discrete variables as vertices of a graph and then use the diffusion kernel on that graph. As the graph size explodes with the number of categorical variables and categories, we propose the graph Cartesian product to decompose the graph into smaller sub-graphs, enabling kernel computation in linear time with respect to the number of input variables. Moreover, in our formulation we learn a scale parameter per subgraph. In empirical studies on four discrete optimization problems we demonstrate that our method is on par or outperforms the state-of-the-art in discrete Bayesian optimization.

点赞 0
阅读2+

Modern inexpensive imaging sensors suffer from inherent hardware constraints which often result in captured images of poor quality. Among the most common ways to deal with such limitations is to rely on burst photography, which nowadays acts as the backbone of all modern smartphone imaging applications. In this work, we focus on the fact that every frame of a burst sequence can be accurately described by a forward (physical) model. This in turn allows us to restore a single image of higher quality from a sequence of low quality images as the solution of an optimization problem. Inspired by an extension of the gradient descent method that can handle non-smooth functions, namely the proximal gradient descent, and modern deep learning techniques, we propose a convolutional iterative network with a transparent architecture. Our network, uses a burst of low quality image frames and is able to produce an output of higher image quality recovering fine details which are not distinguishable in any of the original burst frames. We focus both on the burst photography pipeline as a whole, i.e. burst demosaicking and denoising, as well as on the traditional Gaussian denoising task. The developed method demonstrates consistent state-of-the art performance across the two tasks and as opposed to other recent deep learning approaches does not have any inherent restrictions either to the number of frames or their ordering.

点赞 0
阅读3+

Meta-learning, or learning to learn, is the science of systematically observing how different machine learning approaches perform on a wide range of learning tasks, and then learning from this experience, or meta-data, to learn new tasks much faster than otherwise possible. Not only does this dramatically speed up and improve the design of machine learning pipelines or neural architectures, it also allows us to replace hand-engineered algorithms with novel approaches learned in a data-driven way. In this chapter, we provide an overview of the state of the art in this fascinating and continuously evolving field.

点赞 1
阅读17+
Top