Sequential decision-making (SDM) plays a key role in intelligent robotics, and can be realized in very different ways, such as supervised learning, automated reasoning, and probabilistic planning. The three families of methods follow different assumptions and have different (dis)advantages. In this work, we aim at a robot SDM framework that exploits the complementary features of learning, reasoning, and planning. We utilize long short-term memory (LSTM), for passive state estimation with streaming sensor data, and commonsense reasoning and probabilistic planning (CORPP) for active information collection and task accomplishment. In experiments, a mobile robot is tasked with estimating human intentions using their motion trajectories, declarative contextual knowledge, and human-robot interaction (dialog-based and motion-based). Results suggest that our framework performs better than its no-learning and no-reasoning versions in a real-world office environment.

点赞 0
阅读1+

Most research in reading comprehension has focused on answering questions based on individual documents or even single paragraphs. We introduce a neural model which integrates and reasons relying on information spread within documents and across multiple documents. We frame it as an inference problem on a graph. Mentions of entities are nodes of this graph while edges encode relations between different mentions (e.g., within- and cross-document co-reference). Graph convolutional networks (GCNs) are applied to these graphs and trained to perform multi-step reasoning. Our Entity-GCN method is scalable and compact, and it achieves state-of-the-art results on a multi-document question answering dataset, WikiHop (Welbl et al., 2018).

点赞 0
阅读1+

Over the past 15 years, the volume, richness and quality of data collected from the combined social networking platforms has increased beyond all expectation, providing researchers from a variety of disciplines to use it in their research. Perhaps more impactfully, it has provided the foundation for a range of new products and services, transforming industries such as advertising and marketing, as well as bringing the challenges of sharing personal data into the public consciousness. But how to make sense of the ever-increasing volume of big social data so that we can better understand and improve the user experience in increasingly complex, data-driven digital systems. This link with usability and the user experience of data-driven system bridges into the wider field of HCI, attracting interdisciplinary researchers as we see the demand for consumer technologies, software and systems, as well as the integration of social networks into our everyday lives. The fact that the data largely posted on social networks tends to be textual, provides a further link to linguistics, psychology and psycholinguistics to better understand the relationship between human behaviours offline and online. In this thesis, we present a novel conceptual framework based on a complex digital system using collected longitudinal datasets to predict system status based on the personality traits and emotions extracted from text posted by users. The system framework was built using a dataset collected from an online scholarship system in which 2000 students had their digital behaviour and social network behaviour collected for this study. We contextualise this research project with a wider review and critical analysis of the current psycholinguistics, artificial intelligence and human-computer interaction literature, which reveals a gap of mapping and understanding digital profiling against system status.

点赞 0
阅读1+

The predictive performance of supervised learning algorithms depends on the quality of labels. In a typical label collection process, multiple annotators provide subjective noisy estimates of the "truth" under the influence of their varying skill-levels and biases. Blindly treating these noisy labels as the ground truth limits the accuracy of learning algorithms in the presence of strong disagreement. This problem is critical for applications in domains such as medical imaging where both the annotation cost and inter-observer variability are high. In this work, we present a method for simultaneously learning the individual annotator model and the underlying true label distribution, using only noisy observations. Each annotator is modeled by a confusion matrix that is jointly estimated along with the classifier predictions. We propose to add a regularization term to the loss function that encourages convergence to the true annotator confusion matrix. We provide a theoretical argument as to how the regularization is essential to our approach both for the case of single annotator and multiple annotators. Despite the simplicity of the idea, experiments on image classification tasks with both simulated and real labels show that our method either outperforms or performs on par with the state-of-the-art methods and is capable of estimating the skills of annotators even with a single label available per image.

点赞 0
阅读1+

Deep Neural Networks (DNNs) have established themselves as a dominant technique in machine learning. DNNs have been top performers on a wide variety of tasks including image classification, speech recognition, and face recognition. Convolutional neural networks (CNNs) have been used in nearly all of the top performing methods on the Labeled Faces in the Wild (LFW) dataset. In this talk and accompanying paper, I attempt to provide a review and summary of the deep learning techniques used in the state-of-the-art. In addition, I highlight the need for both larger and more challenging public datasets to benchmark these systems. The high accuracy (99.63% for FaceNet at the time of publishing) and utilization of outside data (hundreds of millions of images in the case of Google's FaceNet) suggest that current face verification benchmarks such as LFW may not be challenging enough, nor provide enough data, for current techniques. There exist a variety of organizations with mobile photo sharing applications that would be capable of releasing a very large scale and highly diverse dataset of facial images captured on mobile devices. Such an "ImageNet for Face Recognition" would likely receive a warm welcome from researchers and practitioners alike.

点赞 0
阅读1+

Microblogging platforms constitute a popular means of real-time communication and information sharing. They involve such a large volume of user-generated content that their users suffer from an information deluge. To address it, numerous recommendation methods have been proposed to organize the posts a user receives according to her interests. The content-based methods typically build a text-based model for every individual user to capture her tastes and then rank the posts in her timeline according to their similarity with that model. Even though content-based methods have attracted lots of interest in the data management community, there is no comprehensive evaluation of the main factors that affect their performance. These are: (i) the representation model that converts an unstructured text into a structured representation that elucidates its characteristics, (ii) the source of the microblog posts that compose the user models, and (iii) the type of user's posting activity. To cover this gap, we systematically examine the performance of 9 state-of-the-art representation models in combination with 13 representation sources and 3 user types over a large, real dataset from Twitter comprising 60 users. We also consider a wide range of 223 plausible configurations for the representation models in order to assess their robustness with respect to their internal parameters. To facilitate the interpretation of our experimental results, we introduce a novel taxonomy of representation models. Our analysis provides novel insights into the performance and functionality of the main factors determining the performance of content-based recommendation in microblogs.

点赞 0
阅读1+

In this work, we study value function approximation in reinforcement learning (RL) problems with high dimensional state or action spaces via a generalized version of representation policy iteration (RPI). We consider the limitations of proto-value functions (PVFs) at accurately approximating the value function in low dimensions and we highlight the importance of features learning for an improved low-dimensional value function approximation. Then, we adopt different representation learning algorithm on graphs to learn the basis functions that best represent the value function. We empirically show that node2vec, an algorithm for scalable feature learning in networks, and the Variational Graph Auto-Encoder constantly outperform the commonly used smooth proto-value functions in low-dimensionl feature space.

点赞 0
阅读1+

Information retrieval systems are evolving from document retrieval to answer retrieval. Web search logs provide large amounts of data about how people interact with ranked lists of documents, but very little is known about interaction with answer texts. In this paper, we use Amazon Mechanical Turk to investigate three answer presentation and interaction approaches in a non-factoid question answering setting. We find that people perceive and react to good and bad answers very differently, and can identify good answers relatively quickly. Our results provide the basis for further investigation of effective answer interaction and feedback methods.

点赞 0
阅读1+

Which generative model is the most suitable for Continual Learning? This paper aims at evaluating and comparing generative models on disjoint sequential image generation tasks. We investigate how several models learn and forget, considering various strategies: rehearsal, regularization, generative replay and fine-tuning. We used two quantitative metrics to estimate the generation quality and memory ability. We experiment with sequential tasks on three commonly used benchmarks for Continual Learning (MNIST, Fashion MNIST and CIFAR10). We found that among all models, the original GAN performs best and among Continual Learning strategies, generative replay outperforms all other methods. Even if we found satisfactory combinations on MNIST and Fashion MNIST, training generative models sequentially on CIFAR10 is particularly instable, and remains a challenge. Our code is available online \footnote{\url{https://github.com/TLESORT/Generative\_Continual\_Learning}}.

点赞 0
阅读1+

In most agent-based simulators, pedestrians navigate from origins to destinations. Consequently, destinations are essential input parameters to the simulation. While many other relevant parameters as positions, speeds and densities can be obtained from sensors, like cameras, destinations cannot be observed directly. Our research question is: Can we obtain this information from video data using machine learning methods? We use density heatmaps, which indicate the pedestrian density within a given camera cutout, as input to predict the destination distributions. For our proof of concept, we train a Random Forest predictor on an exemplary data set generated with the Vadere microscopic simulator. The scenario is a crossroad where pedestrians can head left, straight or right. In addition, we gain first insights on suitable placement of the camera. The results motivate an in-depth analysis of the methodology.

点赞 0
阅读1+
Top