Complex industrial systems are continuously monitored by a large number of heterogeneous sensors. The diversity of their operating conditions and the possible fault types make it impossible to collect enough data for learning all the possible fault patterns. The paper proposes an integrated automatic unsupervised feature learning and one-class classification for fault detection that uses data on healthy conditions only for its training. The approach is based on stacked Extreme Learning Machines (namely Hierarchical, or HELM) and comprises an autoencoder, performing unsupervised feature learning, stacked with a one-class classifier monitoring the distance of the test data to the training healthy class, thereby assessing the health of the system. This study provides a comprehensive evaluation of HELM fault detection capability compared to other machine learning approaches, such as stand-alone one-class classifiers (ELM and SVM), these same one-class classifiers combined with traditional dimensionality reduction methods (PCA) and a Deep Belief Network. The performance is first evaluated on a synthetic dataset that encompasses typical characteristics of condition monitoring data. Subsequently, the approach is evaluated on a real case study of a power plant fault. The proposed algorithm for fault detection, combining feature learning with the one-class classifier, demonstrates a better performance, particularly in cases where condition monitoring data contain several non-informative signals.


翻译:由于操作条件和可能的故障类型多种多样,因此无法收集足够的数据,以了解所有可能的故障模式。本文件建议采用综合自动不受监督的特征学习和故障检测分类,仅将健康条件数据用于培训,采用关于健康条件的数据,对故障检测进行综合自动自动、无监督的特征学习和单级分类;该方法以堆叠式极端学习机(即等级式或高频系统)为基础,由自动编码器组成,进行不受监督的特征学习,并堆叠成一个单级分类器,监测测试数据与培训健康班的距离,从而评估系统的健康状况。随后,该方法提供了与其他机器学习方法相比,如单级单级分类器(ELM和SVM),对HELM缺陷检测能力的综合评价,这些单级分类器与传统的减少维度方法(PCA)和深信仰网络相结合。首先对包含典型状况监测数据的合成数据集进行了评估,随后,在对电源厂错误的真实案例研究上对这种方法进行了评估,与其他机器学习方法(例如独立单级单级单级级分类和SVM)相比,这些单级分类法与一种更好的业绩检测模型。

0
下载
关闭预览

相关内容

在机器学习中,表征学习或表示学习是允许系统从原始数据中自动发现特征检测或分类所需的表示的一组技术。这取代了手动特征工程,并允许机器学习特征并使用它们执行特定任务。在有监督的表征学习中,使用标记的输入数据来学习特征,包括监督神经网络,多层感知器和(监督)字典学习。在无监督表征学习中,特征是与未标记的输入数据一起学习的,包括字典学习,独立成分分析,自动编码器,矩阵分解和各种形式的聚类。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
8+阅读 · 2018年4月12日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员