Multi-hop reasoning question answering requires deep comprehension of relationships between various documents and queries. We propose a Bi-directional Attention Entity Graph Convolutional Network (BAG), leveraging relationships between nodes in an entity graph and attention information between a query and the entity graph, to solve this task. Graph convolutional networks are used to obtain a relation-aware representation of nodes for entity graphs built from documents with multi-level features. Bidirectional attention is then applied on graphs and queries to generate a query-aware nodes representation, which will be used for the final prediction. Experimental evaluation shows BAG achieves state-of-the-art accuracy performance on the QAngaroo WIKIHOP dataset.

点赞 0
阅读2+

Predicting pregnancy has been a fundamental problem in women's health for more than 50 years. Previous datasets have been collected via carefully curated medical studies, but the recent growth of women's health tracking mobile apps offers potential for reaching a much broader population. However, the feasibility of predicting pregnancy from mobile health tracking data is unclear. Here we develop four models -- a logistic regression model, and 3 LSTM models -- to predict a woman's probability of becoming pregnant using data from a women's health tracking app, Clue by BioWink GmbH. Evaluating our models on a dataset of 79 million logs from 65,276 women with ground truth pregnancy test data, we show that our predicted pregnancy probabilities meaningfully stratify women: women in the top 10% of predicted probabilities have a 89% chance of becoming pregnant over 6 menstrual cycles, as compared to a 27% chance for women in the bottom 10%. We develop a technique for extracting interpretable time trends from our deep learning models, and show these trends are consistent with previous fertility research. Our findings illustrate the potential that women's health tracking data offers for predicting pregnancy on a broader population; we conclude by discussing the steps needed to fulfill this potential.

点赞 0
阅读1+

The effectiveness of Graph Convolutional Networks (GCNs) has been demonstrated in a wide range of graph-based machine learning tasks. However, the update of parameters in GCNs is only from labeled nodes, lacking the utilization of unlabeled data. In this paper, we apply Virtual Adversarial Training (VAT), an adversarial regularization method based on both labeled and unlabeled data, on the supervised loss of GCN to enhance its generalization performance. By imposing virtually adversarial smoothness on the posterior distribution in semi-supervised learning, VAT yields improvement on the Symmetrical Laplacian Smoothness of GCNs. In addition, due to the difference of property in features, we perturb virtual adversarial perturbations on sparse and dense features, resulting in GCN Sparse VAT (GCNSVAT) and GCN Dense VAT (GCNDVAT) algorithms, respectively. Extensive experiments verify the effectiveness of our two methods across different training sizes. Our work paves the way towards better understanding the direction of improvement on GCNs in the future.

点赞 0
阅读1+

Scientific documents rely on both mathematics and text to communicate ideas. Inspired by the topical correspondence between mathematical equations and word contexts observed in scientific texts, we propose a novel topic model that jointly generates mathematical equations and their surrounding text (TopicEq). Using an extension of the correlated topic model, the context is generated from a mixture of latent topics, and the equation is generated by an RNN that depends on the latent topic activations. To experiment with this model, we create a corpus of 400K equation-context pairs extracted from a range of scientific articles from arXiv, and fit the model using a variational autoencoder approach. Experimental results show that this joint model significantly outperforms existing topic models and equation models for scientific texts. Moreover, we qualitatively show that the model effectively captures the relationship between topics and mathematics, enabling novel applications such as topic-aware equation generation, equation topic inference, and topic-aware alignment of mathematical symbols and words.

点赞 0
阅读1+

The predictive performance of supervised learning algorithms depends on the quality of labels. In a typical label collection process, multiple annotators provide subjective noisy estimates of the "truth" under the influence of their varying skill-levels and biases. Blindly treating these noisy labels as the ground truth limits the accuracy of learning algorithms in the presence of strong disagreement. This problem is critical for applications in domains such as medical imaging where both the annotation cost and inter-observer variability are high. In this work, we present a method for simultaneously learning the individual annotator model and the underlying true label distribution, using only noisy observations. Each annotator is modeled by a confusion matrix that is jointly estimated along with the classifier predictions. We propose to add a regularization term to the loss function that encourages convergence to the true annotator confusion matrix. We provide a theoretical argument as to how the regularization is essential to our approach both for the case of single annotator and multiple annotators. Despite the simplicity of the idea, experiments on image classification tasks with both simulated and real labels show that our method either outperforms or performs on par with the state-of-the-art methods and is capable of estimating the skills of annotators even with a single label available per image.

点赞 0
阅读1+

This paper presents a robust and comprehensive graph-based rank aggregation approach, used to combine results of isolated ranker models in retrieval tasks. The method follows an unsupervised scheme, which is independent of how the isolated ranks are formulated. Our approach is able to combine arbitrary models, defined in terms of different ranking criteria, such as those based on textual, image or hybrid content representations. We reformulate the ad-hoc retrieval problem as a document retrieval of their fusion graph, which we propose as a new unified representation model capable of merging multiple ranks and expressing inter-relationships of retrieval results automatically. By doing so, we claim that the retrieval system can benefit from learning the manifold structure of datasets, thus leading to more effective results. Another contribution is that our graph-based aggregation formulation, unlike existing approaches, allows for encapsulating contextual information encoded from multiple ranks, which can be directly used for ranking, without further computations and processing steps over the graphs. Based on the graphs, a novel similarity retrieval score is formulated using an efficient computation of minimum common subgraphs. Finally, another benefit over existing approaches is the absence of hyperparameters. A comprehensive experimental evaluation was conducted considering diverse well-known public datasets, composed of textual, image, and multimodal documents. Performed experiments demonstrate that our method reaches top performance, yielding better effectiveness scores than state-of-the-art baseline methods and promoting large gains over the rankers being fused, thus showing the successful capability of the proposal in representing queries based on a unified graph-based model of rank fusions.

点赞 0
阅读1+

The wide spread use of online recruitment services has led to information explosion in the job market. As a result, the recruiters have to seek the intelligent ways for Person Job Fit, which is the bridge for adapting the right job seekers to the right positions. Existing studies on Person Job Fit have a focus on measuring the matching degree between the talent qualification and the job requirements mainly based on the manual inspection of human resource experts despite of the subjective, incomplete, and inefficient nature of the human judgement. To this end, in this paper, we propose a novel end to end Ability aware Person Job Fit Neural Network model, which has a goal of reducing the dependence on manual labour and can provide better interpretation about the fitting results. The key idea is to exploit the rich information available at abundant historical job application data. Specifically, we propose a word level semantic representation for both job requirements and job seekers' experiences based on Recurrent Neural Network. Along this line, four hierarchical ability aware attention strategies are designed to measure the different importance of job requirements for semantic representation, as well as measuring the different contribution of each job experience to a specific ability requirement. Finally, extensive experiments on a large scale real world data set clearly validate the effectiveness and interpretability of the APJFNN framework compared with several baselines.

点赞 0
阅读2+

In most agent-based simulators, pedestrians navigate from origins to destinations. Consequently, destinations are essential input parameters to the simulation. While many other relevant parameters as positions, speeds and densities can be obtained from sensors, like cameras, destinations cannot be observed directly. Our research question is: Can we obtain this information from video data using machine learning methods? We use density heatmaps, which indicate the pedestrian density within a given camera cutout, as input to predict the destination distributions. For our proof of concept, we train a Random Forest predictor on an exemplary data set generated with the Vadere microscopic simulator. The scenario is a crossroad where pedestrians can head left, straight or right. In addition, we gain first insights on suitable placement of the camera. The results motivate an in-depth analysis of the methodology.

点赞 0
阅读1+

There has been much recent, exciting work on combining the complementary strengths of latent variable models and deep learning. Latent variable modeling makes it easy to explicitly specify model constraints through conditional independence properties, while deep learning makes it possible to parameterize these conditional likelihoods with powerful function approximators. While these "deep latent variable" models provide a rich, flexible frameworks for modeling many real-world phenomena, difficulties exist: deep parameterizations of conditional likelihoods usually make posterior inference intractable, and latent variable objectives often complicate backpropagation by introducing points of non-differentiability. This tutorial explores these issues in depth through the lens of variational inference.

点赞 0
阅读1+

Detecting epileptic seizure through analysis of the electroencephalography (EEG) signal becomes a standard method for the diagnosis of epilepsy. In a manual way, monitoring of long term EEG is tedious and error prone. Therefore, a reliable automatic seizure detection method is desirable. A critical challenge to automatic seizure detection is that seizure morphologies exhibit considerable variabilities. In order to capture essential seizure patterns, this paper leverages an attention mechanism and a bidirectional long short-term memory (BiLSTM) model to exploit both spatially and temporally discriminating features and account for seizure variabilities. The attention mechanism is to capture spatial features more effectively according to the contributions of brain areas to seizures. The BiLSTM model is to extract more discriminating temporal features in the forward and the backward directions. By accounting for both spatial and temporal variations of seizures, the proposed method is more robust across subjects. The testing results over the noisy real data of CHB-MIT show that the proposed method outperforms the current state-of-the-art methods. In both mixing-patients and cross-patient experiments, the average sensitivity and specificity are both higher while their corresponding standard deviations are lower than the methods in comparison.

点赞 0
阅读1+
Top