Deep Neural Networks (DNNs) have established themselves as a dominant technique in machine learning. DNNs have been top performers on a wide variety of tasks including image classification, speech recognition, and face recognition. Convolutional neural networks (CNNs) have been used in nearly all of the top performing methods on the Labeled Faces in the Wild (LFW) dataset. In this talk and accompanying paper, I attempt to provide a review and summary of the deep learning techniques used in the state-of-the-art. In addition, I highlight the need for both larger and more challenging public datasets to benchmark these systems. The high accuracy (99.63% for FaceNet at the time of publishing) and utilization of outside data (hundreds of millions of images in the case of Google's FaceNet) suggest that current face verification benchmarks such as LFW may not be challenging enough, nor provide enough data, for current techniques. There exist a variety of organizations with mobile photo sharing applications that would be capable of releasing a very large scale and highly diverse dataset of facial images captured on mobile devices. Such an "ImageNet for Face Recognition" would likely receive a warm welcome from researchers and practitioners alike.


翻译:深心神经网络(DNNS)已经成为机器学习的主导技术。 DNNS在包括图像分类、语音识别和面部识别在内的广泛任务方面表现最出色。 进化神经网络(CNNs)几乎在野生标签面部数据集(LFW)上的所有最佳性能方法中都使用了。 在本次演讲和配套文件中,我试图提供对最新工艺中所用深思熟虑技术的审查和总结。 此外,我还强调,需要更大和更具挑战性的公共数据集来为这些系统制定基准。 高精度(在出版时FaceNet为99.63%)和使用外部数据(谷歌脸网为100万张图像)表明,当前FLFW等面貌验证基准可能不够具有挑战性,也不足以提供当前技术所需的数据。 存在各种具有移动照片共享应用的组织,它们能够释放在移动设备上采集的面部图像的非常大规模和高度多样化的数据集。 这种“Imagenet for Face Resciencealence”的研究人员和“Imacial Investistrations for shall seargress for a swel

1
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
175+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
166+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
76+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
20+阅读 · 2020年6月8日
AutoML: A Survey of the State-of-the-Art
Arxiv
67+阅读 · 2019年8月14日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
71+阅读 · 2018年12月22日
Dynamic Transfer Learning for Named Entity Recognition
Arxiv
3+阅读 · 2018年12月13日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员