We propose a general test of conditional independence. The conditional predictive impact (CPI) is a provably consistent and unbiased estimator of one or several features' association with a given outcome, conditional on a (potentially empty) reduced feature set. Building on the knockoff framework of Cand\`es et al. (2018), we develop a novel testing procedure that works in conjunction with any valid knockoff sampler, supervised learning algorithm, and loss function. The CPI can be efficiently computed for low- or high-dimensional data without any sparsity constraints. We demonstrate convergence criteria for the CPI and develop statistical inference procedures for evaluating its magnitude, significance, and precision. These tests aid in feature and model selection, extending traditional frequentist and Bayesian techniques to general supervised learning tasks. The CPI may also be applied in causal discovery to identify underlying graph structures for multivariate systems. We test our method using various algorithms, including linear regression, neural networks, random forests, and support vector machines. Empirical results show that the CPI compares favorably to alternative variable importance measures and other nonparametric tests of conditional independence on a diverse array of realand simulated datasets. Simulations confirm that our inference procedures successfully control Type I error and achieve nominal coverage probability with greater power and speed than the original knockoff filter. Our method has been implemented in an R package, cpi, which can be downloaded from https://github.com/dswatson/cpi.


翻译:有条件的预测效果(CPI)是一个可以被证实的一致和不偏不倚的、与某种结果关联的一种或多种特征的估算标准,其条件是(可能空的)降低的功能集。在Cand ⁇ es等人(2018年)的入门框架基础上,我们开发了一个创新的测试程序,与任何有效的入门取样器、受监督的学习算法和损失功能一起工作。CIPI可以有效地计算出低或高维数据,而没有任何孔径限制。我们展示了CPI的趋同标准,并制定了评估其规模、重要性和精确度的统计推导程序。这些测试在功能和模型选择方面的帮助,将传统的常客和拜斯人技术推广到一般监管的学习任务。CPI也可以用于因果发现,确定多变系统的基本图表结构。我们用各种算法,包括线性回归、神经网络、随机森林以及支持矢量机器来测试我们的方法。Empricalalalalalalalalalalalal 的结果显示,相对于替代的可变重要性措施和其他非参数测试性判断性测试性测试程序。在我们真实和图像级的精确度的精确度上,可以确认我们真实和图像的精确度的精确度的精确度的精确度。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
专知会员服务
157+阅读 · 2020年1月16日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
57+阅读 · 2019年12月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
54+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
166+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Modern Introduction to Online Learning
Arxiv
19+阅读 · 2019年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
Arxiv
13+阅读 · 2019年1月26日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
A Modern Introduction to Online Learning
Arxiv
19+阅读 · 2019年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
Arxiv
13+阅读 · 2019年1月26日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
9+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员