One of the key differences between the learning mechanism of humans and Artificial Neural Networks (ANNs) is the ability of humans to learn one task at a time. ANNs, on the other hand, can only learn multiple tasks simultaneously. Any attempts at learning new tasks incrementally cause them to completely forget about previous tasks. This lack of ability to learn incrementally, called Catastrophic Forgetting, is considered a major hurdle in building a true AI system. In this paper, our goal is to isolate the truly effective existing ideas for incremental learning from those that only work under certain conditions. To this end, we first thoroughly analyze the current state of the art (iCaRL) method for incremental learning and demonstrate that the good performance of the system is not because of the reasons presented in the existing literature. We conclude that the success of iCaRL is primarily due to knowledge distillation and recognize a key limitation of knowledge distillation, i.e, it often leads to bias in classifiers. Finally, we propose a dynamic threshold moving algorithm that is able to successfully remove this bias. We demonstrate the effectiveness of our algorithm on CIFAR100 and MNIST datasets showing near-optimal results. Our implementation is available at https://github.com/Khurramjaved96/incremental-learning.


翻译:人类和人工神经网络(ANNs)的学习机制与人工神经网络(ANNs)之间的关键差异之一是人类一次学习一项任务的能力。另一方面,ANNs只能同时学习多重任务。任何学习新任务的尝试,都会逐渐导致他们完全忘记以前的任务。这种缺乏逐步学习的能力,称为灾难式的遗忘,被认为是建立真正的AI系统的主要障碍。在本文中,我们的目标是将真正有效的现有渐进学习理念与仅在某些条件下才起作用的理念区分开来。为此,我们首先彻底分析目前艺术(iCaRL)的渐进学习方法的状况,并证明系统的良好运行并非因为现有文献中提出的理由。我们的结论是,iCaRCL的成功主要由于知识的提炼和承认知识蒸馏的关键局限性,即常常导致分类中的偏差。最后,我们建议了能够成功消除这种偏差的动态阈值。我们展示了我们在 CIFAR/MIS/MISC/MISC上的现有算法的有效性。

2
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Arxiv
19+阅读 · 2018年10月25日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员