计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。

    Abstracting complex 3D shapes with parsimonious part-based representations has been a long standing goal in computer vision. This paper presents a learning-based solution to this problem which goes beyond the traditional 3D cuboid representation by exploiting superquadrics as atomic elements. We demonstrate that superquadrics lead to more expressive 3D scene parses while being easier to learn than 3D cuboid representations. Moreover, we provide an analytical solution to the Chamfer loss which avoids the need for computational expensive reinforcement learning or iterative prediction. Our model learns to parse 3D objects into consistent superquadric representations without supervision. Results on various ShapeNet categories as well as the SURREAL human body dataset demonstrate the flexibility of our model in capturing fine details and complex poses that could not have been modelled using cuboids.

    点赞 0
    阅读0+

    Facial action unit (AU) recognition is a crucial task for facial expressions analysis and has attracted extensive attention in the field of artificial intelligence and computer vision. Existing works have either focused on designing or learning complex regional feature representations, or delved into various types of AU relationship modeling. Albeit with varying degrees of progress, it is still arduous for existing methods to handle complex situations. In this paper, we investigate how to integrate the semantic relationship propagation between AUs in a deep neural network framework to enhance the feature representation of facial regions, and propose an AU semantic relationship embedded representation learning (SRERL) framework. Specifically, by analyzing the symbiosis and mutual exclusion of AUs in various facial expressions, we organize the facial AUs in the form of structured knowledge-graph and integrate a Gated Graph Neural Network (GGNN) in a multi-scale CNN framework to propagate node information through the graph for generating enhanced AU representation. As the learned feature involves both the appearance characteristics and the AU relationship reasoning, the proposed model is more robust and can cope with more challenging cases, e.g., illumination change and partial occlusion. Extensive experiments on the two public benchmarks demonstrate that our method outperforms the previous work and achieves state of the art performance.

    点赞 0
    阅读0+

    Machine-learning-based data-driven applications have become ubiquitous, e.g., health-care analysis and database system optimization. Big training data and large (deep) models are crucial for good performance. Dropout has been widely used as an efficient regularization technique to prevent large models from overfitting. However, many recent works show that dropout does not bring much performance improvement for deep convolutional neural networks (CNNs), a popular deep learning model for data-driven applications. In this paper, we formulate existing dropout methods for CNNs under the same analysis framework to investigate the failures. We attribute the failure to the conflicts between the dropout and the batch normalization operation after it. Consequently, we propose to change the order of the operations, which results in new building blocks of CNNs.Extensive experiments on benchmark datasets CIFAR, SVHN and ImageNet have been conducted to compare the existing building blocks and our new building blocks with different dropout methods. The results confirm the superiority of our proposed building blocks due to the regularization and implicit model ensemble effect of dropout. In particular, we improve over state-of-the-art CNNs with significantly better performance of 3.17%, 16.15%, 1.44%, 21.46% error rate on CIFAR-10, CIFAR-100, SVHN and ImageNet respectively.

    点赞 0
    阅读2+

    The body pose of a person wearing a camera is of great interest for applications in augmented reality, healthcare, and robotics, yet much of the person's body is out of view for a typical wearable camera. We propose a learning-based approach to estimate the camera wearer's 3D body pose from egocentric video sequences. Our key insight is to leverage interactions with another person---whose body pose we can directly observe---as a signal inherently linked to the body pose of the first-person subject. We show that since interactions between individuals often induce a well-ordered series of back-and-forth responses, it is possible to learn a temporal model of the interlinked poses even though one party is largely out of view. We demonstrate our idea on a variety of domains with dyadic interaction and show the substantial impact on egocentric body pose estimation, which improves the state of the art. Video results are available at http://vision.cs.utexas.edu/projects/you2me/

    点赞 0
    阅读0+

    Recently, deep learning has become a de facto standard in machine learning with convolutional neural networks (CNNs) demonstrating spectacular success on a wide variety of tasks. However, CNNs are typically very demanding computationally at inference time. One of the ways to alleviate this burden on certain hardware platforms is quantization relying on the use of low-precision arithmetic representation for the weights and the activations. Another popular method is the pruning of the number of filters in each layer. While mainstream deep learning methods train the neural networks weights while keeping the network architecture fixed, the emerging neural architecture search (NAS) techniques make the latter also amenable to training. In this paper, we formulate optimal arithmetic bit length allocation and neural network pruning as a NAS problem, searching for the configurations satisfying a computational complexity budget while maximizing the accuracy. We use a differentiable search method based on the continuous relaxation of the search space proposed by Liu et al. (arXiv:1806.09055). We show, by grid search, that heterogeneous quantized networks suffer from a high variance which renders the benefit of the search questionable. For pruning, improvement over homogeneous cases is possible, but it is still challenging to find those configurations with the proposed method. The code is publicly available at https://github.com/yochaiz/Slimmable and https://github.com/yochaiz/darts-UNIQ .

    点赞 0
    阅读0+

    Understanding the behaviors and intentions of humans are one of the main challenges autonomous ground vehicles still faced with. More specifically, when it comes to complex environments such as urban traffic scenes, inferring the intentions and actions of vulnerable road users such as pedestrians become even harder. In this paper, we address the problem of intent action prediction of pedestrians in urban traffic environments using only image sequences from a monocular RGB camera. We propose a real-time framework that can accurately detect, track and predict the intended actions of pedestrians based on a tracking-by-detection technique in conjunction with a novel spatio-temporal DenseNet model. We trained and evaluated our framework based on real data collected from urban traffic environments. Our framework has shown resilient and competitive results in comparison to other baseline approaches. Overall, we achieved an average precision score of 84.76% with a real-time performance at 20 FPS.

    点赞 0
    阅读0+

    This paper presents a new deep-learning based method to simultaneously calibrate the intrinsic parameters of fisheye lens and rectify the distorted images. Assuming that the distorted lines generated by fisheye projection should be straight after rectification, we propose a novel deep neural network to impose explicit geometry constraints onto processes of the fisheye lens calibration and the distorted image rectification. In addition, considering the nonlinearity of distortion distribution in fisheye images, the proposed network fully exploits multi-scale perception to equalize the rectification effects on the whole image. To train and evaluate the proposed model, we also create a new largescale dataset labeled with corresponding distortion parameters and well-annotated distorted lines. Compared with the state-of-the-art methods, our model achieves the best published rectification quality and the most accurate estimation of distortion parameters on a large set of synthetic and real fisheye images.

    点赞 0
    阅读0+

    Multi-task learning is commonly used in autonomous driving for solving various visual perception tasks. It offers significant benefits in terms of both performance and computational complexity. Current work on multi-task learning networks focus on processing a single input image and there is no known implementation of multi-task learning handling a sequence of images. In this work, we propose a multi-stream multi-task network to take advantage of using feature representations from preceding frames in a video sequence for joint learning of segmentation, depth, and motion. The weights of the current and previous encoder are shared so that features computed in the previous frame can be leveraged without additional computation. In addition, we propose to use the geometric mean of task losses as a better alternative to the weighted average of task losses. The proposed loss function facilitates better handling of the difference in convergence rates of different tasks. Experimental results on KITTI, Cityscapes and SYNTHIA datasets demonstrate that the proposed strategies outperform various existing multi-task learning solutions.

    点赞 0
    阅读1+

    Global Average Pooling (GAP) is used by default on the channel-wise attention mechanism to extract channel descriptors. However, the simple global aggregation method of GAP is easy to make the channel descriptors have homogeneity, which weakens the detail distinction between feature maps, thus affecting the performance of the attention mechanism. In this work, we propose a novel method for channel-wise attention network, called Stochastic Region Pooling (SRP), which makes the channel descriptors more representative and diversity by encouraging the feature map to have more or wider important feature responses. Also, SRP is the general method for the attention mechanisms without any additional parameters or computation. It can be widely applied to attention networks without modifying the network structure. Experimental results on image recognition datasets including CIAFR-10/100, ImageNet and three Fine-grained datasets (CUB-200-2011, Stanford Cars and Stanford Dogs) show that SRP brings the significant improvements of the performance over efficient CNNs and achieves the state-of-the-art results.

    点赞 0
    阅读0+

    The performance of object instance segmentation in remote sensing images has been greatly improved through the introduction of many landmark frameworks based on convolutional neural network. However, the object densely issue still affects the accuracy of such segmentation frameworks. Objects of the same class are easily confused, which is most likely due to the close docking between objects. We think context information is critical to address this issue. So, we propose a novel framework called SLCMASK-Net, in which a sequence local context module (SLC) is introduced to avoid confusion between objects of the same class. The SLC module applies a sequence of dilation convolution blocks to progressively learn multi-scale context information in the mask branch. Besides, we try to add SLC module to different locations in our framework and experiment with the effect of different parameter settings. Comparative experiments are conducted on remote sensing images acquired by QuickBird with a resolution of $0.5m-1m$ and the results show that the proposed method achieves state-of-the-art performance.

    点赞 0
    阅读0+

    In this paper, we demonstrate the benefits of using state-of-the-art machine learning methods in the analysis of historical photo archives. Specifically, we analyze prominent Finnish World War II photographers, who have captured high numbers of photographs in the publicly available SA photo archive, which contains 160,000 photographs from Finnish Winter, Continuation, and Lapland Wars captures in 1939-1945. We were able to find some special characteristics for different photographers in terms of their typical photo content and photo types (e.g., close-ups vs. overview images, number of people). Furthermore, we managed to train a neural network that can successfully recognize the photographer from some of the photos, which shows that such photos are indeed characteristic for certain photographers. We further analyze the similarities and differences between the photographers using the features extracted from the photographer classifier network. All the extracted information will help historical and societal studies over the photo archive.

    点赞 0
    阅读0+

    We propose a novel deep learning architecture for three-dimensional porous media structure reconstruction from two-dimensional slices. A high-level idea is that we fit a distribution on all possible three-dimensional structures of a specific type based on the given dataset of samples. Then, given partial information (central slices) we recover the three-dimensional structure that is built around such slices. Technically, it is implemented as a deep neural network with encoder, generator and discriminator modules. Numerical experiments show that this method gives a good reconstruction in terms of Minkowski functionals.

    点赞 0
    阅读0+

    Localizing an image wrt. a 3D scene model represents a core task for many computer vision applications. An increasing number of real-world applications of visual localization on mobile devices, e.g., Augmented Reality or autonomous robots such as drones or self-driving cars, demand localization approaches to minimize storage and bandwidth requirements. Compressing the 3D models used for localization thus becomes a practical necessity. In this work, we introduce a new hybrid compression algorithm that uses a given memory limit in a more effective way. Rather than treating all 3D points equally, it represents a small set of points with full appearance information and an additional, larger set of points with compressed information. This enables our approach to obtain a more complete scene representation without increasing the memory requirements, leading to a superior performance compared to previous compression schemes. As part of our contribution, we show how to handle ambiguous matches arising from point compression during RANSAC. Besides outperforming previous compression techniques in terms of pose accuracy under the same memory constraints, our compression scheme itself is also more efficient. Furthermore, the localization rates and accuracy obtained with our approach are comparable to state-of-the-art feature-based methods, while using a small fraction of the memory.

    点赞 0
    阅读0+

    A novel technique for deep learning of image classifiers is presented. The learned CNN models offer better separation of deep features (also known as embedded vectors) measured by Euclidean proximity and also no deterioration of the classification results by class membership probability. The latter feature can be used for enhancing image classifiers having the classes at the model's exploiting stage different from from classes during the training stage. While the Shannon information of SoftMax probability for target class is extended for mini-batch by the intra-class variance, the trained network itself is extended by the Hadamard layer with the parameters representing the class centers. Contrary to the existing solutions, this extra neural layer enables interfacing of the training algorithm to the standard stochastic gradient optimizers, e.g. AdaM algorithm. Moreover, this approach makes the computed centroids immediately adapting to the updating embedded vectors and finally getting the comparable accuracy in less epochs.

    点赞 0
    阅读0+

    Convolutional Neural Networks (CNNs) have been proven to be extremely successful at solving computer vision tasks. State-of-the-art methods favor such deep network architectures for its accuracy performance, with the cost of having massive number of parameters and high weights redundancy. Previous works have studied how to prune such CNNs weights. In this paper, we go to another extreme and analyze the performance of a network stacked with a single convolution kernel across layers, as well as other weights sharing techniques. We name it Deep Anchored Convolutional Neural Network (DACNN). Sharing the same kernel weights across layers allows to reduce the model size tremendously, more precisely, the network is compressed in memory by a factor of L, where L is the desired depth of the network, disregarding the fully connected layer for prediction. The number of parameters in DACNN barely increases as the network grows deeper, which allows us to build deep DACNNs without any concern about memory costs. We also introduce a partial shared weights network (DACNN-mix) as well as an easy-plug-in module, coined regulators, to boost the performance of our architecture. We validated our idea on 3 datasets: CIFAR-10, CIFAR-100 and SVHN. Our results show that we can save massive amounts of memory with our model, while maintaining a high accuracy performance.

    点赞 0
    阅读0+
Top