** Scientific documents rely on both mathematics and text to communicate ideas. Inspired by the topical correspondence between mathematical equations and word contexts observed in scientific texts, we propose a novel topic model that jointly generates mathematical equations and their surrounding text (TopicEq). Using an extension of the correlated topic model, the context is generated from a mixture of latent topics, and the equation is generated by an RNN that depends on the latent topic activations. To experiment with this model, we create a corpus of 400K equation-context pairs extracted from a range of scientific articles from arXiv, and fit the model using a variational autoencoder approach. Experimental results show that this joint model significantly outperforms existing topic models and equation models for scientific texts. Moreover, we qualitatively show that the model effectively captures the relationship between topics and mathematics, enabling novel applications such as topic-aware equation generation, equation topic inference, and topic-aware alignment of mathematical symbols and words. **

** This paper conducts a comparative study on the performance of various machine learning (``ML'') approaches for classifying judgments into legal areas. Using a novel dataset of 6,227 Singapore Supreme Court judgments, we investigate how state-of-the-art NLP methods compare against traditional statistical models when applied to a legal corpus that comprised few but lengthy documents. All approaches tested, including topic model, word embedding, and language model-based classifiers, performed well with as little as a few hundred judgments. However, more work needs to be done to optimize state-of-the-art methods for the legal domain. **

** We address two challenges in topic models: (1) Context information around words helps in determining their actual meaning, e.g., "networks" used in the contexts "artificial neural networks" vs. "biological neuron networks". Generative topic models infer topic-word distributions, taking no or only little context into account. Here, we extend a neural autoregressive topic model to exploit the full context information around words in a document in a language modeling fashion. The proposed model is named as iDocNADE. (2) Due to the small number of word occurrences (i.e., lack of context) in short text and data sparsity in a corpus of few documents, the application of topic models is challenging on such texts. Therefore, we propose a simple and efficient way of incorporating external knowledge into neural autoregressive topic models: we use embeddings as a distributional prior. The proposed variants are named as DocNADEe and iDocNADEe. We present novel neural autoregressive topic model variants that consistently outperform state-of-the-art generative topic models in terms of generalization, interpretability (topic coherence) and applicability (retrieval and classification) over 7 long-text and 8 short-text datasets from diverse domains. **

** We introduce a dynamic generative model, Bayesian allocation model (BAM), which establishes explicit connections between nonnegative tensor factorization (NTF), graphical models of discrete probability distributions and their Bayesian extensions, and the topic models such as the latent Dirichlet allocation. BAM is based on a Poisson process, whose events are marked by using a Bayesian network, where the conditional probability tables of this network are then integrated out analytically. We show that the resulting marginal process turns out to be a Polya urn, an integer valued self-reinforcing process. This urn processes, which we name a Polya-Bayes process, obey certain conditional independence properties that provide further insight about the nature of NTF. These insights also let us develop space efficient simulation algorithms that respect the potential sparsity of data: we propose a class of sequential importance sampling algorithms for computing NTF and approximating their marginal likelihood, which would be useful for model selection. The resulting methods can also be viewed as a model scoring method for topic models and discrete Bayesian networks with hidden variables. The new algorithms have favourable properties in the sparse data regime when contrasted with variational algorithms that become more accurate when the total sum of the elements of the observed tensor goes to infinity. We illustrate the performance on several examples and numerically study the behaviour of the algorithms for various data regimes. **

** Analyzing short texts infers discriminative and coherent latent topics that is a critical and fundamental task since many real-world applications require semantic understanding of short texts. Traditional long text topic modeling algorithms (e.g., PLSA and LDA) based on word co-occurrences cannot solve this problem very well since only very limited word co-occurrence information is available in short texts. Therefore, short text topic modeling has already attracted much attention from the machine learning research community in recent years, which aims at overcoming the problem of sparseness in short texts. In this survey, we conduct a comprehensive review of various short text topic modeling techniques proposed in the literature. We present three categories of methods based on Dirichlet multinomial mixture, global word co-occurrences, and self-aggregation, with example of representative approaches in each category and analysis of their performance on various tasks. We develop the first comprehensive open-source library, called STTM, for use in Java that integrates all surveyed algorithms within a unified interface, benchmark datasets, to facilitate the expansion of new methods in this research field. Finally, we evaluate these state-of-the-art methods on many real-world datasets and compare their performance against one another and versus long text topic modeling algorithm. **

** Cancer is one of the leading cause of death, worldwide. Many believe that genomic data will enable us to better predict the survival time of these patients, which will lead to better, more personalized treatment options and patient care. As standard survival prediction models have a hard time coping with the high-dimensionality of such gene expression (GE) data, many projects use some dimensionality reduction techniques to overcome this hurdle. We introduce a novel methodology, inspired by topic modeling from the natural language domain, to derive expressive features from the high-dimensional GE data. There, a document is represented as a mixture over a relatively small number of topics, where each topic corresponds to a distribution over the words; here, to accommodate the heterogeneity of a patient's cancer, we represent each patient (~document) as a mixture over cancer-topics, where each cancer-topic is a mixture over GE values (~words). This required some extensions to the standard LDA model eg: to accommodate the "real-valued" expression values - leading to our novel "discretized" Latent Dirichlet Allocation (dLDA) procedure. We initially focus on the METABRIC dataset, which describes breast cancer patients using the r=49,576 GE values, from microarrays. Our results show that our approach provides survival estimates that are more accurate than standard models, in terms of the standard Concordance measure. We then validate this approach by running it on the Pan-kidney (KIPAN) dataset, over r=15,529 GE values - here using the mRNAseq modality - and find that it again achieves excellent results. In both cases, we also show that the resulting model is calibrated, using the recent "D-calibrated" measure. These successes, in two different cancer types and expression modalities, demonstrates the generality, and the effectiveness, of this approach. **

** Software repositories contain large amounts of textual data, ranging from source code comments and issue descriptions to questions, answers, and comments on Stack Overflow. To make sense of this textual data, topic modelling is frequently used as a text-mining tool for the discovery of hidden semantic structures in text bodies. Latent Dirichlet allocation (LDA) is a commonly used topic model that aims to explain the structure of a corpus by grouping texts. LDA requires multiple parameters to work well, and there are only rough and sometimes conflicting guidelines available on how these parameters should be set. In this paper, we contribute (i) a broad study of parameters to arrive at good local optima for GitHub and Stack Overflow text corpora, (ii) an a-posteriori characterisation of text corpora related to eight programming languages, and (iii) an analysis of corpus feature importance via per-corpus LDA configuration. We find that (1) popular rules of thumb for topic modelling parameter configuration are not applicable to the corpora used in our experiments, (2) corpora sampled from GitHub and Stack Overflow have different characteristics and require different configurations to achieve good model fit, and (3) we can predict good configurations for unseen corpora reliably. These findings support researchers and practitioners in efficiently determining suitable configurations for topic modelling when analysing textual data contained in software repositories. **

** Steady progress has been made in abstractive summarization with attention-based sequence-to-sequence learning models. In this paper, we propose a new decoder where the output summary is generated by conditioning on both the input text and the latent topics of the document. The latent topics, identified by a topic model such as LDA, reveals more global semantic information that can be used to bias the decoder to generate words. In particular, they enable the decoder to have access to additional word co-occurrence statistics captured at document corpus level. We empirically validate the advantage of the proposed approach on both the CNN/Daily Mail and the WikiHow datasets. Concretely, we attain strongly improved ROUGE scores when compared to state-of-the-art models. **

** Traces of user interactions with a software system, captured in production, are commonly used as an input source for user experience testing. In this paper, we present an alternative use, introducing a novel approach of modeling user interaction traces enriched with another type of data gathered in production - software fault reports consisting of software exceptions and stack traces. The model described in this paper aims to improve developers' comprehension of the circumstances surrounding a specific software exception and can highlight specific user behaviors that lead to a high frequency of software faults. Modeling the combination of interaction traces and software crash reports to form an interpretable and useful model is challenging due to the complexity and variance in the combined data source. Therefore, we propose a probabilistic unsupervised learning approach, adapting the Nested Hierarchical Dirichlet Process, which is a Bayesian non-parametric topic model commonly applied to natural language data. This model infers a tree of topics, each of whom describes a set of commonly co-occurring commands and exceptions. The topic tree can be interpreted hierarchically to aid in categorizing the numerous types of exceptions and interactions. We apply the proposed approach to large scale datasets collected from the ABB RobotStudio software application, and evaluate it both numerically and with a small survey of the RobotStudio developers. **

** We present Variational Aspect-based Latent Topic Allocation (VALTA), a family of autoencoding topic models that learn aspect-based representations of reviews. VALTA defines a user-item encoder that maps bag-of-words vectors for combined reviews associated with each paired user and item onto structured embeddings, which in turn define per-aspect topic weights. We model individual reviews in a structured manner by inferring an aspect assignment for each sentence in a given review, where the per-aspect topic weights obtained by the user-item encoder serve to define a mixture over topics, conditioned on the aspect. The result is an autoencoding neural topic model for reviews, which can be trained in a fully unsupervised manner to learn topics that are structured into aspects. Experimental evaluation on large number of datasets demonstrates that aspects are interpretable, yield higher coherence scores than non-structured autoencoding topic model variants, and can be utilized to perform aspect-based comparison and genre discovery. **