Graph convolution operators bring the advantages of deep learning to a variety of graph and mesh processing tasks previously deemed out of reach. With their continued success comes the desire to design more powerful architectures, often by adapting existing deep learning techniques to non-Euclidean data. In this paper, we argue geometry should remain the primary driving force behind innovation in the emerging field of geometric deep learning. We relate graph neural networks to widely successful computer graphics and data approximation models: radial basis functions (RBFs). We conjecture that, like RBFs, graph convolution layers would benefit from the addition of simple functions to the powerful convolution kernels. We introduce affine skip connections, a novel building block formed by combining a fully connected layer with any graph convolution operator. We experimentally demonstrate the effectiveness of our technique and show the improved performance is the consequence of more than the increased number of parameters. Operators equipped with the affine skip connection markedly outperform their base performance on every task we evaluated, i.e., shape reconstruction, dense shape correspondence, and graph classification. We hope our simple and effective approach will serve as a solid baseline and help ease future research in graph neural networks.


翻译:图形化操作器将深层次学习的优势带给先前认为无法触及的各种图形和网状处理任务。 由于它们继续取得成功, 想要设计更强大的结构, 通常是通过将现有的深层次学习技术改造到非欧元数据。 在本文中, 我们主张, 几何应该仍然是新兴的几何深层学习领域创新背后的主要动力。 我们把图形神经网络与广泛成功的计算机图形和数据近似模型联系起来: 辐射基础功能 。 我们推测, 像 RBFs 一样, 图形变形层会从强大的电动内核添加简单功能中受益。 我们引入松动连接连接连接, 这是将一个完全连接的层与任何图形变形操作器结合起来形成的新建筑块。 我们实验性地展示了我们技术的实效, 并展示了改进的性能不仅仅是参数数量增加的结果。 配备电离子连接的操作器将明显超出我们所评估的每一项任务的基础性能, 例如, 形状重建, 密质成通信和图形分类。 我们希望我们简单而有效的方法将会成为一个坚实的基线和清晰的图表网络。 我们希望, 。

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
【新书】Python编程基础,669页pdf
专知会员服务
185+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
95+阅读 · 2019年10月9日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
11+阅读 · 2017年9月24日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
11+阅读 · 2017年9月24日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员