We introduce a new neural network-based continual learning algorithm, dubbed as Uncertainty-regularized Continual Learning (UCL), which builds on traditional Bayesian online learning framework with variational inference. We focus on two significant drawbacks of the recently proposed regularization-based methods: a) considerable additional memory cost for determining the per-weight regularization strengths and b) the absence of gracefully forgetting scheme, which can prevent performance degradation in learning new tasks. In this paper, we show UCL can solve these two problems by introducing a fresh interpretation on the Kullback-Leibler (KL) divergence term of the variational lower bound for Gaussian mean-field approximation. Based on the interpretation, we propose the notion of node-wise uncertainty, which drastically reduces the number of additional parameters for implementing per-weight regularization. Moreover, we devise two additional regularization terms that enforce stability by freezing important parameters for past tasks and allow plasticity by controlling the actively learning parameters for a new task. Through extensive experiments, we show UCL convincingly outperforms most of recent state-of-the-art baselines not only on popular supervised learning benchmarks, but also on challenging lifelong reinforcement learning tasks. The source code of our algorithm is available at https://github.com/csm9493/UCL.


翻译:我们引入了一个新的以神经网络为基础的以神经网络为基础的持续学习算法,称为 " 不确定性-常规性持续学习(UCL) ",它以传统的巴伊西亚在线学习框架为基础,以变相推推推推论为基础。我们侧重于最近提议的基于正规化方法的两个重大缺点:(a) 确定人均重量规范化优势需要大量额外的记忆成本,以及(b) 没有优雅的遗忘计划,这可以在学习新任务时防止性能退化。在本文中,UCL展示出UCL能够解决这两个问题,方法是对高山平均场近似值的变异性低约束的 Kullback-Leiber (KL) 差异术语进行新的解释。我们根据这些解释提出了 " 低度不确定性 " 的概念,这大大降低了执行人均重量规范化优势的附加参数的数量。此外,我们又制定了另外两个规范化条款,通过冻结以往任务的重要参数,并通过控制一项新任务的积极学习参数,使塑料化。我们通过广泛的实验,向UCL展示了对最新状态-艺术基准线最优于可加扎的基线的G93年均受监督的学习基准。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
7+阅读 · 2018年12月26日
A General and Adaptive Robust Loss Function
Arxiv
7+阅读 · 2018年11月5日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关论文
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
7+阅读 · 2018年12月26日
A General and Adaptive Robust Loss Function
Arxiv
7+阅读 · 2018年11月5日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2017年12月14日
Top
微信扫码咨询专知VIP会员