New technologies for recording the activity of large neural populations during complex behavior provide exciting opportunities for investigating the neural computations that underlie perception, cognition, and decision-making. Nonlinear state-space models provide an interpretable signal processing framework by combining an intuitive dynamical system with a probabilistic observation model, which can provide insights into neural dynamics, neural computation, and development of neural prosthetics and treatment through feedback control. It yet brings the challenge of learning both latent neural state and the underlying dynamical system because neither is known for neural systems a priori. We developed a flexible online learning framework for latent nonlinear state dynamics and filtered latent states. Using the stochastic gradient variational Bayes approach, our method jointly optimizes the parameters of the nonlinear dynamical system, the observation model, and the black-box recognition model. Unlike previous approaches, our framework can incorporate non-trivial distributions of observation noise and has constant time and space complexity. These features make our approach amenable to real-time applications and the potential to automate analysis and experimental design in ways that testably track and modify behavior using stimuli designed to influence learning.


翻译:在复杂行为期间,用于记录大型神经群活动的新技术为调查作为认知、认知和决策基础的神经计算提供了令人振奋的机会。非线性国家空间模型提供了一个可解释的信号处理框架,将直观动态系统与概率观测模型相结合,能够提供神经动态、神经计算以及神经假体和通过反馈控制进行治疗的洞察力。它也带来了学习潜在神经状态和内在动态系统的挑战,因为神经系统既不为人知。我们为潜在的非线性状态动态和过滤潜潜伏状态开发了一个灵活的在线学习框架。我们的方法联合优化了非线性动态系统、观察模型和黑箱识别模型的参数。与以往的方法不同,我们的框架可以包含观测噪音的非三角分布,并且具有恒定的时间和空间复杂性。这些特征使我们的方法适应实时应用,并有可能进行自动分析与实验设计,从而以可测试的方式跟踪和修改使用Simli系统设计的影响,从而跟踪和修改行为。

0
下载
关闭预览

相关内容

神经计算(Neural Computation)期刊传播在理论、建模、计算方面的重要的多学科的研究,在神经科学统计和建设神经启发信息处理系统。这个领域吸引了心理学家、物理学家、计算机科学家、神经科学家和人工智能研究人员,他们致力于研究感知、情感、认知和行为背后的神经系统,以及具有类似能力的人工神经系统。由BRAIN Initiative开发的强大的新实验技术将产生大量复杂的数据集,严谨的统计分析和理论洞察力对于理解这些数据的含义至关重要。及时的、简短的交流、完整的研究文章以及对该领域进展的评论,涵盖了神经计算的所有方面。 官网地址:http://dblp.uni-trier.de/db/journals/neco/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2019年5月20日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
8+阅读 · 2018年3月20日
Arxiv
3+阅读 · 2018年1月10日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员