In general coding theory, we often assume that error is observed in transferring or storing encoded symbols, while the process of encoding itself is error-free. Motivated by recent applications of coding theory, in this paper, we consider the case where the process of encoding is distributed and prone to error. We introduce the problem of distributed encoding, comprising of $K\in\mathbb{N}$ isolated source nodes and $N\in\mathbb{N}$ encoding nodes. Each source node has one symbol from a finite field and sends it to all encoding nodes. Each encoding node stores an encoded symbol, as a function of the received symbols. However, some of the source nodes are controlled by the adversary and may send different symbols to different encoding nodes. Depending on the number of adversarial nodes, denoted by $\beta\in\mathbb{N}$, and the number of symbols that each one generates, denoted by $v\in\mathbb{N}$, the process of decoding from the encoded symbols could be impossible. Assume that a decoder connects to an arbitrary subset of $t \in\mathbb{N}$ encoding nodes and wants to decode the symbols of the honest nodes correctly, without necessarily identifying the sets of honest and adversarial nodes. In this paper, we study $t^*\in\mathbb{N}$, the minimum of $t$, which is a function of $K$, $N$, $\beta$, and $v$. We show that when the encoding nodes use linear coding, $t^*_{\textrm{linear}}=K+2\beta(v-1)$, if $N\ge K+2\beta(v-1)$, and $t^*_{\textrm{linear}}=N$, if $N\le K+2\beta(v-1)$. In order to achieve $t^*_{\textrm{linear}}$, we use random linear coding and show that in any feasible solution that the decoder finds, the messages of the honest nodes are decoded correctly. For the converse of the fundamental limit, we show that when the adversary behaves in a particular way, it can always confuse the decoder between two feasible solutions that differ in the message of at least one honest node.


翻译:在一般 Coding 理论中, 我们常常假设在传输或存储编码符号时会观察到错误, 而编码过程本身是无误的。 受最近应用编码理论的驱动, 在本文件中, 我们考虑编码过程分布和容易出错的情况。 我们引入了分布编码的问题, 包括$K\ in\ mathb{N} 孤立源节点和$N\in\ mathb{N} 编码节点。 每个源节点从一个有限的字段中有一个符号, 并将其发送到所有编码节点。 每个编码节点存储一个编码符号, 作为收到的符号的函数。 然而, 一些源节点由对手控制, 可能会向不同的编码节点发送不同的符号。 取决于辩论节点的数量, 由 $\ n\\ mathb} 和 $n\ mathb{N} 元节点组成, 每个源点生成的符号数量, 由 $\\\\ lidedelex 美元 和 $ dent 美元 的节点之间, 。 如果 美元符号的解解码的解解调调调,, 美元符号, 当 美元的解算时, K 美元和 美元的代代代号的代号的调的调的调的调, 将无法显示, 。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
166+阅读 · 2019年10月11日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
18+阅读 · 2020年7月13日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
42+阅读 · 2019年12月20日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
Arxiv
4+阅读 · 2019年1月14日
The Matrix Calculus You Need For Deep Learning
Arxiv
10+阅读 · 2018年7月2日
VIP会员
相关资讯
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员