In recent years, Deep Neural Networks (DNNs) have had a dramatic impact on a variety of problems that were long considered very difficult, e. g., image classification and automatic language translation to name just a few. The accuracy of modern DNNs in classification tasks is remarkable indeed. At the same time, attackers have devised powerful methods to construct specially-crafted malicious inputs (often referred to as adversarial examples) that can trick DNNs into mis-classifying them. What is worse is that despite the many defense mechanisms proposed to protect DNNs against adversarial attacks, attackers are often able to circumvent these defenses, rendering them useless. This state of affairs is extremely worrying, especially since machine learning systems get adopted at scale. In this paper, we propose a scientific evaluation methodology aimed at assessing the quality, efficacy, robustness and efficiency of randomized defenses to protect DNNs against adversarial examples. Using this methodology, we evaluate a variety of defense mechanisms. In addition, we also propose a defense mechanism we call Randomly Perturbed Ensemble Neural Networks (RPENNs). We provide a thorough and comprehensive evaluation of the considered defense mechanisms against a white-box attacker model, six different adversarial attack methods and using the ILSVRC2012 validation data set.


翻译:近年来,深神经网络(DNN)对长期被认为非常困难的各种问题产生了巨大影响,例如图像分类和自动语言翻译等,这些问题长期被认为是非常困难的问题。现代DNN在分类任务中的准确性确实非常显著。与此同时,攻击者设计了强大的方法来构建特别制造的恶意投入(通常称为对抗性例子),可以诱使DNN将其错误分类。更糟糕的是,尽管提出了许多保护DNN不受对抗性攻击的防御机制,但攻击者往往能够绕过这些防御,使其失去效用。这种情况令人极为担忧,特别是机器学习系统被大规模采用之后。我们在本文件中提出了科学评价方法,旨在评估随机防卫的质量、效力、稳健和效率,以保护DNNN不受对抗性例子的影响。我们使用这种方法评估了各种防御机制。此外,我们还提议了一种防御机制,我们称之为随机穿孔的Ensemble网络(REPNN),使其失去作用。这种状态令人极为担忧,特别是因为机器学习系统被大规模采用。我们提出了一个科学评估方法,用以评估I-LS的六种防御模式,用来对付不同的白箱式攻击。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员