One simplifying assumption made in distributed robot systems is that the robots are single-tasking: each robot operates on a single task at any time. While such a sanguine assumption is innocent to make in situations with sufficient resources so that the robots can operate independently, it becomes impractical when they must share their capabilities. In this paper, we consider multi-tasking robots with multi-robot tasks. Given a set of tasks, each achievable by a coalition of robots, our approach allows the coalitions to overlap and task synergies to be exploited by reasoning about the physical constraints that can be synergistically satisfied for achieving the tasks. The key contribution of this work is a general and flexible framework to achieve this ability for multi-robot systems in resource-constrained situations to extend their capabilities. The proposed approach is built on the information invariant theory, which specifies the interactions between information requirements. In our work, we map physical constraints to information requirements, thereby allowing task synergies to be identified via the information invariant framework. We show that our algorithm is sound and complete under a problem setting with multi-tasking robots. Simulation results show its effectiveness under resource-constrained situations and in handling challenging situations in a multi-UAV simulator.


翻译:在分布式机器人系统中,一个简化的假设是,机器人是单一任务:每个机器人在任何时候都在单一任务中运作。虽然在有足够资源的情况下,这种随机假设是无辜的,在机器人能够独立运作的情况下是无辜的,但当机器人必须独立运作时,这种假设变得不切实际。在本文中,我们考虑多任务机器人和多机器人任务之间的多重任务。鉴于一系列任务,每个任务都是由机器人联盟可以实现的,我们的方法允许联盟重叠和任务协同效应,通过推理能够协同完成任务的物理限制来加以利用。这项工作的主要贡献是,在资源紧缺的情况下,实现多机器人系统能力的能力是一个一般和灵活的框架。提议的方法建立在信息变量理论上,该理论规定了信息要求之间的相互作用。在我们的工作中,我们绘制了对信息要求的物理限制,从而通过信息变量框架确定任务协同效应。我们显示,在多任务机器人问题设置下,我们的算法是合理和完整的。模拟结果显示其在资源紧缺时在资源紧缺状态下的有效性,在多任务错乱的状态下处理具有挑战性的状态。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
45+阅读 · 2020年1月23日
专知会员服务
84+阅读 · 2019年12月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning Discriminative Model Prediction for Tracking
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
45+阅读 · 2020年1月23日
专知会员服务
84+阅读 · 2019年12月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员