Item response theory (IRT) is a non-linear generative probabilistic paradigm for using exams to identify, quantify, and compare latent traits of individuals, relative to their peers, within a population of interest. In pre-existing multidimensional IRT methods, one requires a factorization of the test items. For this task, linear exploratory factor analysis is used, making IRT a posthoc model. We propose skipping the initial factor analysis by using a sparsity-promoting horseshoe prior to perform factorization directly within the IRT model so that all training occurs in a single self-consistent step. Being a hierarchical Bayesian model, we adapt the WAIC to the problem of dimensionality selection. IRT models are analogous to probabilistic autoencoders. By binding the generative IRT model to a Bayesian neural network (forming a probabilistic autoencoder), one obtains a scoring algorithm consistent with the interpretable Bayesian model. In some IRT applications the black-box nature of a neural network scoring machine is desirable. In this manuscript, we demonstrate within-IRT factorization and comment on scoring approaches.


翻译:项目响应理论( IRT) 是一个非线性基因化的遗传性概率模型, 用于使用考试来识别、 量化和比较个人( 相对于同龄人) 在感兴趣的人群中的潜在特征。 在先前存在的多维的 IRT 方法中, 需要一个测试项目的因子化。 对于此任务, 使用线性探索系数分析, 使 IRT 成为一个后热模型。 我们建议跳过初始要素分析, 在直接在 IRT 模型中进行分解之前, 使用 sparity- promoting horpshoe 来直接进行分解。 这样, 所有培训都以单一的自我一致步骤进行。 作为一种等级的 Bayesian 模型, 我们使 WAIC 适应于维度选择的问题。 IRT 模型类似于概率性自动电算器 。 通过将 IMT 模型连接到 Bayesian 神经网络( 形成一种可解释的自动电算模型), 我们建议跳式算算法与可解释的 Bayesian 模型一致。 在 IRT 应用神经网络评分数机器的黑箱性质时, 我们定了 。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月4日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员