Industrial Control Networks (ICN) such as Supervisory Control and Data Acquisition (SCADA) systems are widely used in industries for monitoring and controlling physical processes. These industries include power generation and supply, gas and oil production and delivery, water and waste management, telecommunication and transport facilities. The integration of internet exposes these systems to cyber threats. The consequences of compromised ICN are determine for a country economic and functional sustainability. Therefore, enforcing security and ensuring correctness operation became one of the biggest concerns for Industrial Control Systems (ICS), and need to be addressed. In this paper, we propose an anomaly detection approach for ICN using the physical properties of the system. We have developed operational baseline of electricity generation process and reduced the feature set using greedy and genetic feature selection algorithms. The classification is done based on Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), and C4.5 decision tree with the help from the inter-arrival curves. The results show that the proposed approach successfully detects anomalies with a high degree of accuracy. In addition, they proved that SVM and C4.5 produces accurate results even for high sensitivity attacks when they used with the inter-arrival curves. As compared to this, k-NN is unable to produce good results for low and medium sensitivity attacks test cases.


翻译:工业控制网络(ICN),如监督控制和数据采集系统(SCADA)等工业控制网络(ICN)被广泛用于工业监测和控制物理过程,这些行业包括发电和供应、天然气和石油生产与输送、水和石油生产与输送、水和废物管理、电信和运输设施。互联网的一体化使这些系统面临网络威胁。受到破坏的ICN的后果决定了一个国家的经济和功能可持续性。因此,实施安全和确保正确性操作成为工业控制系统的最大关注问题之一,需要加以解决。在本文件中,我们提议采用系统物理特性对ICN采取异常检测方法。我们制定了发电流程的业务基线,并减少了使用贪婪和遗传特征选择算法的特征集。根据支持病媒机器(SVM)、K-Nearst Nieghbor(k-NNN)和C4.5决策树进行分类,并借助地铁曲线的帮助。结果显示,拟议的方法以高度精确的方式检测出异常现象。此外,SVM和C4.5还利用贪婪和遗传特征选择的中等攻击结果。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
专知会员服务
112+阅读 · 2019年12月24日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
96+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员