In 1979 Valiant introduced the complexity class VNP of p-definable families of polynomials, he defined the reduction notion known as p-projection and he proved that the permanent polynomial and the Hamiltonian cycle polynomial are VNP-complete under p-projections. In 2001 Mulmuley and Sohoni (and independently B\"urgisser) introduced the notion of border complexity to the study of the algebraic complexity of polynomials. In this algebraic machine model, instead of insisting on exact computation, approximations are allowed. This gives VNP the structure of a topological space. In this short note we study the set VNPC of VNP-complete polynomials. We show that the complement VNP \ VNPC lies dense in VNP. Quite surprisingly, we also prove that VNPC lies dense in VNP. We prove analogous statements for the complexity classes VF, VBP, and VP. The density of VNP \ VNPC holds for several different reduction notions: p-projections, border p-projections, c-reductions, and border c-reductions. We compare the relationship of the VNP-completeness notion under these reductions and separate most of the corresponding sets. Border reduction notions were introduced by Bringmann, Ikenmeyer, and Zuiddam (JACM 2018). Our paper is the first structured study of border reduction notions.


翻译:1979年,Valiant引入了多元金属可定义家庭复杂的VNP等级,他定义了称为P-预测的减少概念,并证明永久性多元金属和汉密尔顿周期多元金属在预测中是完整的。2001年,Mulmuley和Sohoni(以及独立B\\"urgisser)在研究多元金属的代数复杂性时引入了边界复杂性概念。在这个代数机器模型中,他没有坚持精确计算,而是允许近似。这给了VNP一个地形空间的结构。在这个简短的说明中,我们研究了VNPC的VNP-完整多元金属结构。我们表明,VNP 和VNPC的互补性在VNP中非常密集。非常令人惊讶的是,我们还证明VNPC在VNP中非常密集。我们在复杂等级VF、VBB和VP中证明了类似的声明。 VNPC的密度为几个不同的削减概念:P-P-C在结构上、边界的减少,在我们的2018M关系中,这些分级的减少和分级的减少。

0
下载
关闭预览

相关内容

JACM:Journal of the ACM。 Explanation:ACM杂志。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/journals/jacm/
【DeepMind】强化学习教程,83页ppt
专知会员服务
147+阅读 · 2020年8月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
已删除
德先生
53+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【机器学习数学基础】动图解释泰勒级数(一)
机器学习研究会
5+阅读 · 2018年2月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月20日
Arxiv
0+阅读 · 2021年4月20日
VIP会员
相关资讯
已删除
德先生
53+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【机器学习数学基础】动图解释泰勒级数(一)
机器学习研究会
5+阅读 · 2018年2月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员