Interpretability is important for many applications of machine learning to signal data, covering aspects such as how well a model fits the data, how accurately explanations are drawn from it, and how well these can be understood by people. Feature extraction and selection can improve model interpretability by identifying structures in the data that are both informative and intuitively meaningful. To this end, we propose a signal classification framework that combines feature extraction with feature selection using the knockoff filter, a method which provides guarantees on the false discovery rate (FDR) amongst selected features. We apply this to a dataset of Raman spectroscopy measurements from bacterial samples. Using a wavelet-based feature representation of the data and a logistic regression classifier, our framework achieves significantly higher predictive accuracy compared to using the original features as input. Benchmarking was also done with features obtained through principal components analysis, as well as the original features input into a neural network-based classifier. Our proposed framework achieved better predictive performance at the former task and comparable performance at the latter task, while offering the advantage of a more compact and human-interpretable set of features.


翻译:解释性对于许多机器学习应用以信号数据很重要,包括模型与数据相匹配的程度、从中得出准确的解释以及人们能够理解这些数据的程度等各个方面。 特征提取和选择可以通过确定数据结构中既具有信息性又具有直觉意义的结构来改进模型解释性。 为此,我们提议了一个信号分类框架,将特征提取与使用传球过滤器选择特征结合起来,这种方法为某些特征中的虚假发现率(FDR)提供保障。我们将此应用于从细菌样本中测得的拉曼光谱学数据集。我们利用基于波盘的数据特征和物流回归分解器,我们的框架与原始特征作为投入相比,实现了显著更高的预测性准确性。还通过主要组成部分分析获得的特征以及原始特征输入以神经网络为基础的分类器进行基准。我们提议的框架在前一项任务中实现了更好的预测性业绩和后一项任务的可比性业绩,同时提供了更为紧凑和人与人之间的一组特征的优势。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
193+阅读 · 2020年2月24日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
96+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
An Analysis of Object Embeddings for Image Retrieval
Arxiv
4+阅读 · 2019年5月28日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员