Childhood obesity is a major public health challenge. Obesity in early childhood and adolescence can lead to obesity and other health risks in adulthood. Early prediction and identification of high-risk populations can help to prevent its development. With early identification, proper interventions can be used for its prevention. In this paper, we build prediction models to predict future BMI from baseline medical history data. We used unaugmented Nemours EHR (Electronic Health Record) data as represented in the PEDSnet (A pediatric Learning Health System) common data model. We trained variety of machine learning models to perform binary classification of obese, and non-obese for children in early childhood ages and during adolescence. We explored if deep learning techniques that can model the temporal nature of EHR data would improve the performance of predicting obesity as compared to other machine learning techniques that ignore temporality. We also added attention layer at top of rnn layer in our model to compute the attention scores of each hidden layer corresponding to each input timestep. The attention score for each timestep were computed as an average score given to all the features associated with the timestep. These attention scores added interpretability at both timestep level and the features associated with the timesteps.


翻译:幼儿期和青春期的肥胖症可导致肥胖症和其他成年健康风险; 早期预测和识别高风险人群有助于防止其发展; 通过早期识别,可以使用适当的干预措施来加以预防; 在本文件中,我们根据基本医疗史数据建立预测未来BMI的预测模型; 我们使用PEDSnet(儿科学习卫生系统)共同数据模型中代表的未经强化的Nemours EHR(电子健康记录)数据; 我们培训了多种机器学习模型,以便对幼儿期和青少年期的儿童进行肥胖和非肥胖的二分级; 我们探讨了如果能够模拟EHR数据的时间性质的深层次学习技术能提高预测肥胖症的性能,而忽视时间性的其他机器学习技术则能; 我们还在模型中增加了伦层顶层的注意层,以计算每一隐蔽层对输入时间间隔的注意分数; 每一次的注意分数被计算为所有与时间步骤相关的特征的平均分数; 这些注意分数与时间段和时间段相联。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
专知会员服务
59+阅读 · 2020年3月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
21+阅读 · 2018年2月14日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
3+阅读 · 2017年12月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员