Head-related transfer function (HRTF) plays an important role in the construction of 3D auditory display. This paper presents an individual HRTF modeling method using deep neural networks based on spatial principal component analysis. The HRTFs are represented by a small set of spatial principal components combined with frequency and individual-dependent weights. By estimating the spatial principal components using deep neural networks and mapping the corresponding weights to a quantity of anthropometric parameters, we predict individual HRTFs in arbitrary spatial directions. The objective and subjective experiments evaluate the HRTFs generated by the proposed method, the principal component analysis (PCA) method, and the generic method. The results show that the HRTFs generated by the proposed method and PCA method perform better than the generic method. For most frequencies the spectral distortion of the proposed method is significantly smaller than the PCA method in the high frequencies but significantly larger in the low frequencies. The evaluation of the localization model shows the PCA method is better than the proposed method. The subjective localization experiments show that the PCA and the proposed methods have similar performances in most conditions. Both the objective and subjective experiments show that the proposed method can predict HRTFs in arbitrary spatial directions.


翻译:与头有关的转移功能(HRTF)在构建 3D 听力显示中起着重要作用。本文件展示了使用基于空间主力分析的深神经网络的单个HRTF模型方法; HRTF由一组空间主力组件组成,这些组件与频率和个人依赖的重量相结合。 通过使用深神经网络估计空间主力组件,并将相应重量与数量人类测量参数相匹配,我们以任意的空间方向预测单个HRTF; 客观和主观实验评估了拟议方法、主要组成部分分析方法和通用方法产生的HRTF。 结果表明,拟议方法和五氯苯甲醚方法产生的HRTF比通用方法效果更好。 对于大多数频率而言,拟议方法的光谱扭曲大大小于高频率的五氯苯甲醚方法,但低频率则大得多。对本地化模型的评估表明,常设仲裁院的方法比拟议方法要好。主观本地化实验显示,在多数情况下,常设仲裁院和拟议方法的性能都与一般方法相似。客观和主观实验都显示,拟议方法可以预测空间方向中的HRTF。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
简明扼要!Python教程手册,206页pdf
专知会员服务
46+阅读 · 2020年3月24日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Attend More Times for Image Captioning
Arxiv
6+阅读 · 2018年12月8日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
简明扼要!Python教程手册,206页pdf
专知会员服务
46+阅读 · 2020年3月24日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员