The field of neuroscience is experiencing rapid growth in the complexity and quantity of the recorded neural activity allowing us unprecedented access to its dynamics in different brain areas. One of the major goals of neuroscience is to find interpretable descriptions of what the brain represents and computes by trying to explain complex phenomena in simple terms. Considering this task from the perspective of dimensionality reduction provides an entry point into principled mathematical techniques allowing us to discover these representations directly from experimental data, a key step to developing rich yet comprehensible models for brain function. In this work, we employ two real-world binary datasets describing the spontaneous neuronal activity of two laboratory mice over time, and we aim to their efficient low-dimensional representation. We develop an innovative, robust to noise, dictionary learning algorithm for the identification of patterns with synchronous activity and we also extend it to identify patterns within larger time windows. The results on the classification accuracy for the discrimination between the clean and the adversarial-noisy activation patterns obtained by an SVM classifier highlight the efficacy of the proposed scheme, and the visualization of the dictionary's distribution demonstrates the multifarious information that we obtain from it.


翻译:神经科学领域在记录神经活动的复杂程度和数量方面正经历着快速增长的神经科学领域的记录神经活动,使我们能够空前地进入不同大脑区域的动态。神经科学的主要目标之一是找到对大脑所代表的和通过简单解释复杂现象进行计算的解释性描述。从减少维度的角度考虑这项任务,为原则数学技术提供了一个切入点,使我们能够直接从实验数据中发现这些表现,这是开发丰富而可理解的大脑功能模型的关键一步。在这项工作中,我们使用了两个真实世界的二元数据集,描述两个实验室老鼠在一段时间内自发神经活动的情况,我们的目标是以高效的低维度表示方式。我们开发了一种创新的、强大的噪音和字典学习算法,用以识别同步活动的模式,我们还将其扩展至在更大的时间窗口内确定模式。SVM分类器获取的对清洁和对抗性活动模式之间区别的分类准确性结果突出了拟议方案的功效,以及字典分布的可视化展示了我们从中获取的多种信息。

0
下载
关闭预览

相关内容

稀疏表达的效果好坏和用的字典有着密切的关系。字典分两类,一种是预先给定的分析字典,比如小波基、DCT等,另一种则是针对特定数据集学习出特定的字典。这种学出来的字典能大大提升在特定数据集的效果。
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2018年1月4日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员