This paper considers downlink of reconfigurable intelligent surface (RIS) assisted cooperative non-orthogonal multiple access (CNOMA) systems. Our objective is to minimize the total transmit power by jointly optimizing the active beamforming vectors, transmit-relaying power, and RIS phase shifts. The formulated problem is a mixed-integer nonlinear programming (MINLP) problem. To tackle this problem, the alternating optimization approach is utilized to decouple the variables. In each alternative procedure, the optimal solutions for the active beamforming vectors, transmit-relaying power and phase shifts are obtained. However, the proposed algorithm has high complexity since the optimal phase shifts are solved by integer linear programming (ILP) whose computational complexity is exponential in the number of variables. To strike a good computational complexity-optimality trade-off, a low-complexity suboptimal algorithm is proposed by invoking the iterative penalty function based semidefinite programming (SDP) and the successive refinement approaches. Numerical results illustrate that: i) the proposed RIS-CNOMA system, aided by our proposed algorithms, outperforms the conventional CNOMA system. ii) the proposed low-complexity suboptimal algorithm can achieve the near-optimal performance. iii) whether the RIS-CNOMA system outperforms the RIS assisted non-orthogonal multiple access (RIS-NOMA) system depends not only on the users' locations but also on the RIS' location.


翻译:本文审视了可重新配置的智能表面(RIS) 辅助非正反向多重访问系统( CNOMA) 的下链接。 我们的目标是通过联合优化主动波束成形矢量、 传输回流力和RIS 阶段转换, 最大限度地减少传输总动力。 设计的问题是一个混合的内插非线性编程( MILP) 问题 。 为了解决这个问题, 使用交替优化法来解析变量。 在每种替代程序中, 都获得了主动波形成形矢量、 传输回流动力和阶段变换的最佳解决方案。 然而, 拟议的算法是高度复杂的, 因为最佳的阶段变换是通过整线性线性编程程序( ILP) 解决的。 要达到一个好的计算复杂性- 优化交易( 低相容性亚缩缩缩略图 ), 提议采用基于半不精确度编程( SDP) 和连续的精细化方法的调算法。 数字结果显示: 拟议的RIS- NIS- CNOMA 系统不是接近的, IMA 亚缩 系统也帮助了我们提议的低亚化系统。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
166+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
269+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
CCF推荐 | 国际会议信息10条
Call4Papers
7+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
CCF推荐 | 国际会议信息10条
Call4Papers
7+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员