Prototype-based methods are of the particular interest for domain specialists and practitioners as they summarize a dataset by a small set of representatives. Therefore, in a classification setting, interpretability of the prototypes is as significant as the prediction accuracy of the algorithm. Nevertheless, the state-of-the-art methods make inefficient trade-offs between these concerns by sacrificing one in favor of the other, especially if the given data has a kernel-based representation. In this paper, we propose a novel interpretable multiple-kernel prototype learning (IMKPL) to construct highly interpretable prototypes in the feature space, which are also efficient for the discriminative representation of the data. Our method focuses on the local discrimination of the classes in the feature space and shaping the prototypes based on condensed class-homogeneous neighborhoods of data. Besides, IMKPL learns a combined embedding in the feature space in which the above objectives are better fulfilled. When the base kernels coincide with the data dimensions, this embedding results in a discriminative features selection. We evaluate IMKPL on several benchmarks from different domains which demonstrate its superiority to the related state-of-the-art methods regarding both interpretability and discriminative representation.


翻译:以原型为基础的方法对域专家和实践者特别感兴趣,因为他们总结了一组代表的数据集。因此,在分类设置中,原型的可解释性与算法的预测准确性一样重要。然而,最先进的方法通过牺牲一种方法而牺牲另一种方法而使这些关切之间的权衡效率低,特别是如果给定的数据具有内核代表制。在本文件中,我们提出一种新的可解释的多内核原型学习模式(IMKPL),以在地貌空间中构建高度可解释的原型,这也对数据的区别代表性十分有效。我们的方法侧重于地貌空间中各班级的当地歧视,并根据浓缩的等级和相容性数据区塑造原型。此外,IMKPL还学习了将上述目标更好地实现的地貌空间结合在一起。当基本内核与数据维度相吻合时,这种嵌入在有区别性特征的选择中的结果。我们从不同领域对IMKPL的一些基准进行了评估,这些基准显示其优劣性与相关国家代表性的解释方法。

0
下载
关闭预览

相关内容

【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员