Hyperspectral imaging is a rich source of data, allowing for multitude of effective applications. On the other hand such imaging remains challenging because of large data dimension and, typically, small pool of available training examples. While deep learning approaches have been shown to be successful in providing effective classification solutions, especially for high dimensional problems, unfortunately they work best with a lot of labelled examples available. To alleviate the second requirement for a particular dataset the transfer learning approach can be used: first the network is pre-trained on some dataset with large amount of training labels available, then the actual dataset is used to fine-tune the network. This strategy is not straightforward to apply with hyperspectral images, as it is often the case that only one particular image of some type or characteristic is available. In this paper, we propose and investigate a simple and effective strategy of transfer learning that uses unsupervised pre-training step without label information. This approach can be applied to many of the hyperspectral classification problems. Performed experiments show that it is very effective in improving the classification accuracy without being restricted to a particular image type or neural network architecture. An additional advantage of the proposed approach is the unsupervised nature of the pre-training step, which can be done immediately after image acquisition, without the need of the potentially costly expert's time.


翻译:超光谱成像是一种丰富的数据来源,它允许多种有效的应用。另一方面,这种成像由于庞大的数据维度和一般而言,现有培训实例很少,仍然具有挑战性。虽然深层次学习方法在提供有效的分类解决方案方面证明是成功的,特别是对于高维问题而言,但不幸的是,它们使用许多贴有标签的例子最有效。为了减轻对特定数据集的第二个要求,可以使用传输学习方法:首先,网络在具有大量培训标签的某些数据集上预先接受了培训,然后实际的数据集被用来微调网络。这一战略并非直接适用于超光谱图像,因为通常只有某种特定类型的或特征的图像。在本文件中,我们建议并调查一个简单有效的转移学习战略,在没有标签信息的情况下使用未经监督的培训前步骤。这一方法可以适用于许多超光谱分类问题。进行实验表明,在改进分类准确性方面非常有效,而不局限于特定的图像类型或神经网络结构。这个战略并非简单易应用,因为通常只提供某种特定类型的或特征的图像。在高光谱网络结构下,拟议的方法的另一个优点是获得成本很高的图像,在不需进行专家培训之后,因此立即获得可能进行这种程度的升级。

0
下载
关闭预览

相关内容

迁移学习(Transfer Learning)是一种机器学习方法,是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。迁移学习(TL)是机器学习(ML)中的一个研究问题,着重于存储在解决一个问题时获得的知识并将其应用于另一个但相关的问题。例如,在学习识别汽车时获得的知识可以在尝试识别卡车时应用。尽管这两个领域之间的正式联系是有限的,但这一领域的研究与心理学文献关于学习转移的悠久历史有关。从实践的角度来看,为学习新任务而重用或转移先前学习的任务中的信息可能会显着提高强化学习代理的样本效率。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
94+阅读 · 2020年5月31日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
55+阅读 · 2020年5月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
7+阅读 · 2018年12月6日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员