The celebrated minimax principle of Yao (1977) says that for any Boolean-valued function $f$ with finite domain, there is a distribution $\mu$ over the domain of $f$ such that computing $f$ to error $\epsilon$ against inputs from $\mu$ is just as hard as computing $f$ to error $\epsilon$ on worst-case inputs. Notably, however, the distribution $\mu$ depends on the target error level $\epsilon$: the hard distribution which is tight for bounded error might be trivial to solve to small bias, and the hard distribution which is tight for a small bias level might be far from tight for bounded error levels. In this work, we introduce a new type of minimax theorem which can provide a hard distribution $\mu$ that works for all bias levels at once. We show that this works for randomized query complexity, randomized communication complexity, some randomized circuit models, quantum query and communication complexities, approximate polynomial degree, and approximate logrank. We also prove an improved version of Impagliazzo's hardcore lemma. Our proofs rely on two innovations over the classical approach of using Von Neumann's minimax theorem or linear programming duality. First, we use Sion's minimax theorem to prove a minimax theorem for ratios of bilinear functions representing the cost and score of algorithms. Second, we introduce a new way to analyze low-bias randomized algorithms by viewing them as "forecasting algorithms" evaluated by a proper scoring rule. The expected score of the forecasting version of a randomized algorithm appears to be a more fine-grained way of analyzing the bias of the algorithm. We show that such expected scores have many elegant mathematical properties: for example, they can be amplified linearly instead of quadratically. We anticipate forecasting algorithms will find use in future work in which a fine-grained analysis of small-bias algorithms is required.


翻译:Yao (1977年) 的著名迷你原则 指出, 对于任何具有有限域域的布利亚值的运算中, 以有限域名值计价 $f 的硬分配 $mu$, 以美元计算美元, 以美元折价, 以美元折价, 以美元折价计算美元, 以美元折价, 以美元计价。 值得注意的是, 美元折价取决于目标错误水平 $\ epsilon 。 对于任何带有有限域名的布利亚值运算中, 以美元折价折价折价计算, 以美元折价折价的差价分配可能微不足道, 以小偏差值表示的偏差值分配。 在这项工作中, 我们引入了一个新的迷你运算值, 将使用一个硬数的直径直径直径直径直径直的直径直径直值 。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员