Deep generative models can emulate the perceptual properties of complex image datasets, providing a latent representation of the data. However, manipulating such representation to perform meaningful and controllable transformations in the data space remains challenging without some form of supervision. While previous work has focused on exploiting statistical independence to disentangle latent factors, we argue that such requirement is too restrictive and propose instead a non-statistical framework that relies on counterfactual manipulations to uncover a modular structure of the network composed of disentangled groups of internal variables. Experiments with a variety of generative models trained on complex image datasets show the obtained modules can be used to design targeted interventions. This opens the way to applications such as computationally efficient style transfer and the automated assessment of robustness to contextual changes in pattern recognition systems.


翻译:深层基因模型可以模仿复杂的图像数据集的感知特性,为数据提供潜在的代表性;然而,在没有某种形式的监督的情况下,操纵这种代表性以在数据空间进行有意义和可控的转换仍然具有挑战性;虽然以前的工作重点是利用统计独立性来解析潜在因素,但我们认为,这种要求限制性过强,并提议一个非统计性框架,依靠反事实操纵来发现网络的模块结构,由内部变数分解的一组组成;与经过复杂图像数据集培训的各种基因模型进行的实验表明,所获得的模块可用于设计有针对性的干预措施,这为应用诸如计算高效的风格转移和自动评估对模式识别系统上下文变化的稳健性等提供了途径。

0
下载
关闭预览

相关内容

在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
159+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
96+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
195+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
4+阅读 · 2018年4月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员