Non-negative Matrix Factorization (NMF) has proven to be a powerful unsupervised learning method for uncovering hidden features in complex and noisy data sets with applications in data mining, text recognition, dimension reduction, face recognition, anomaly detection, blind source separation, and many other fields. An important input for NMF is the latent dimensionality of the data, that is, the number of hidden features, K, present in the explored data set. Unfortunately, this quantity is rarely known a priori. We utilize a supervised machine learning approach in combination with a recent method for model determination, called NMFk, to determine the number of hidden features automatically. NMFk performs a set of NMF simulations on an ensemble of matrices, obtained by bootstrapping the initial data set, and determines which K produces stable groups of latent features that reconstruct the initial data set well. We then train a Multi-Layer Perceptron (MLP) classifier network to determine the correct number of latent features utilizing the statistics and characteristics of the NMF solutions, obtained from NMFk. In order to train the MLP classifier, a training set of 58,660 matrices with predetermined latent features were factorized with NMFk. The MLP classifier in conjunction with NMFk maintains a greater than 95% success rate when applied to a held out test set. Additionally, when applied to two well-known benchmark data sets, the swimmer and MIT face data, NMFk/MLP correctly recovered the established number of hidden features. Finally, we compared the accuracy of our method to the ARD, AIC and Stability-based methods.


翻译:非负式矩阵系数(NMF)已被证明是一个强大的、不受监督的学习方法,用以发现复杂和噪音数据集中隐藏的特征,这些数据集在数据挖掘、文本识别、维度降低、面部识别、异常检测、盲源分离和其他许多领域的应用中都应用。NMF的一个重要输入是数据的潜在维度,即隐藏特征的数量,在探索的数据集中显示K。不幸的是,这一数量在先验时鲜为人知。我们使用一种监督的机器学习方法,结合一种称为NMFk的模型确定方法,以自动确定隐藏特征的数量。NMFK在一组初始数据集的集合中进行一套NMFM模型的隐蔽性模型模拟,通过对一组数据进行跟踪,确定哪些K产生稳定的潜在特征组,从而很好地重建初始数据集。然后,我们用MFMF/MF解决方案的明晰面和特性来确定隐含NMFMF解决方案的正确数量。为了将MFS-ML的MF数据序列比20,将MFMML的MML数据模型和MLMMML的精确度比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值为95。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
18+阅读 · 2020年7月13日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员