An integral function of fully autonomous robots and humans is the ability to focus attention on a few relevant percepts to reach a certain goal while disregarding irrelevant percepts. Humans and animals rely on the interactions between the Pre-Frontal Cortex (PFC) and the Basal Ganglia (BG) to achieve this focus called Working Memory (WM). The Working Memory Toolkit (WMtk) was developed based on a computational neuroscience model of this phenomenon with Temporal Difference (TD) Learning for autonomous systems. Recent adaptations of the toolkit either utilize Abstract Task Representations (ATRs) to solve Non-Observable (NO) tasks or storage of past input features to solve Partially-Observable (PO) tasks, but not both. We propose a new model, PONOWMtk, which combines both approaches, ATRs and input storage, with a static or dynamic number of ATRs. The results of our experiments show that PONOWMtk performs effectively for tasks that exhibit PO, NO, or both properties.


翻译:完全自主的机器人和人类的一个固有功能是能够集中关注几个相关的概念,以便在无视不相关概念的情况下达到某一目标。人类和动物依靠Fental Cortex(PFC)和Basal Ganglia(BG)之间的相互作用来实现这一重点,即工作记忆。工作记忆工具包(WMTK)是根据与时间差异(TD)为自主系统学习的这一现象的计算神经科学模型开发的。最近对工具包的调整,要么利用摘要任务说明(ATR)解决不可观测(NO)的任务,要么储存过去输入特征,以解决部分可观测(PO)的任务,但并非两者兼有。我们提出了一个新的模型,即PONOWMtk,将方法、ATRs和输入存储结合起来,并配有静态或动态的ATR。我们的实验结果表明,PONOWMtk为显示 PO、NO或两种属性的任务有效地履行了任务。

2
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
126+阅读 · 2020年5月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
159+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
54+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
166+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
9+阅读 · 2019年4月19日
Arxiv
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Top
微信扫码咨询专知VIP会员