The Kronecker product is an important matrix operation with a wide range of applications in supporting fast linear transforms, including signal processing, graph theory, quantum computing and deep learning. In this work, we introduce a generalization of the fast Johnson-Lindenstrauss projection for embedding vectors with Kronecker product structure, the Kronecker fast Johnson-Lindenstrauss transform (KFJLT). The KFJLT reduces the embedding cost to an exponential factor of the standard fast Johnson-Lindenstrauss transform (FJLT)'s cost when applied to vectors with Kronecker structure, by avoiding explicitly forming the full Kronecker products. We prove that this computational gain comes with only a small price in embedding power: given $N = \prod_{k=1}^d n_k$, consider a finite set of $p$ points in a tensor product of $d$ constituent Euclidean spaces $\bigotimes_{k=d}^{1}\mathbb{R}^{n_k} \subset \mathbb{R}^{N}$. With high probability, a random KFJLT matrix of dimension $N \times m$ embeds the set of points up to multiplicative distortion $(1\pm \varepsilon)$ provided by $m \gtrsim \varepsilon^{-2} \cdot \log^{2d - 1} (p) \cdot \log N$. We conclude by describing a direct application of the KFJLT to the efficient solution of large-scale Kronecker-structured least squares problems for fitting the CP tensor decomposition.


翻译:Kronecker 产品是支持快速线性变换的重要矩阵操作, 包括信号处理、 图形理论、 量数计算和深层学习。 在这项工作中, 我们引入了快速 Johnson- Lindenstraus 投影为 Kronecker 产品结构, Kronecker 快速 Johnson- Lindenstraus 变换 (KFJLT) 。 KFJLT 将嵌入成本降低到标准快速 Johnson- Lindenstraus 变换( FJLT) 的成本指数系数, 用于 Kronecker 结构的矢量, 避免 明确形成完整的 Kronecker 产品。 我们证明, 嵌入电源的速率只有小价: $=\ prod ⁇ k=1 nk. kFLTLT; 将硬质产值的量定值数设置为 美元构成 Ecloidea 空间 $\\\ d= d\\\\\ d\\\\\ mathbx 的 Oiral mal max $ R=r= dal= kl= dal maxal maxl= dalx max maxl= dal maxl= dal= sal= dal= dalxxxxl= dalxxxxal= dir= dir= dir= ml=l=l=l=l=l=l=l=l=l=xxxxxxxxxxl=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxal=xal=xal=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxl=

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
101+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员