也就是今年 1 月份 DeepSeek 在 arxiv 公布的论文《DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》。这篇Nature论文通讯作者正是梁文锋。
论文链接:https://www.nature.com/articles/s41586-025-09422-z 在封面的推荐介绍中,Nature 写到: 如果训练出的大模型能够规划解决问题所需的步骤,那么它们往往能够更好地解决问题。这种『推理』与人类处理更复杂问题的方式类似,但这对人工智能有极大挑战,需要人工干预来添加标签和注释。在本周的期刊中,DeepSeek 的研究人员揭示了他们如何能够在极少的人工输入下训练一个模型,并使其进行推理。 DeepSeek-R1 模型采用强化学习进行训练。在这种学习中,模型正确解答数学问题时会获得高分奖励,答错则会受到惩罚。结果,它学会了推理——逐步解决问题并揭示这些步骤——更有可能得出正确答案。这使得 DeepSeek-R1 能够自我验证和自我反思,在给出新问题的答案之前检查其性能,从而提高其在编程和研究生水平科学问题上的表现。 此外,