致敬3000万创业者:500位CEO的至暗时刻 向你诠释2018的全部真相

2018 年 12 月 25 日 铅笔道


2018年是创投圈的至暗之年,从创业到投资,似黑云压境。谁都在等待云破月来的时刻:夹缝中漏出来的那道金黄,就是最美的光;至暗时刻中的那份坚持,就是希望。


亲爱的创业者:


你们好。即将告别2018,不知此刻你们的心情是否坦然:过去1年,想必你们经历了不少苦难,融资失败,合伙人离场,资金链断裂......那些常人难以想象的至暗时刻,你们必然已经经历,或者正在经历当中。


我们听说,今年的融资形势尤为严峻,许多事情让我们也非常意外。就在几个月前,我们年初还在洽谈的一家人民币基金,年后居然遭受了倒闭厄运。那些熟悉的名字,我们几个月前才刚刚服务过。一些同道中人告诉我们,国内大多数人民币基金今年难免被波及。


也是几个月前,一位深圳的创业者告诉我们,他曾在3个月内拿到了6个TS(投资意向书),最终全部泡汤。大家是否还记得2015年,我们曾认为撕毁TS都是一件不光荣的事情。而今,项目即便从TS走到尽职调查,走到投决会,依然有较大的未知因素。一位投资人告诉我们,今年机构的过会率大大降低,他们的投决会过会率仅有10%~30%。


今年,作为创新创业媒体,我们也感受到了创业公司存活的艰难。2015年掀起了全民双创热浪,投融资达到史无前例的高潮。2016年经历小寒冬,2017上半年略有回暖,年底便迎来大寒冬前兆。


我们的感受,2017年在不断报道风口,2018年我们却在不断报道风口死亡。风口起,风口灭,只在1年之间。我们也曾一度迷茫,无论是共享经济,还是无人零售,还是区块链,这些几百亿乃至几千亿资金砸入的行业,或是单个融资便是上百亿的公司,竟然都是难逃厄运。


有人曾说,这些都是行业里的榜样。榜样的力量是无穷的,但此时此刻,大家曾经眼中的“榜样”好像都失败了。不禁感慨,若是一个普通的草根创业者,内心的使命与信念该有多么浓烈,才能支撑你们走到今天?


今年8-10月,铅笔道所在的长远天地大厦A2,3个月之内全部换了“邻居”:一家为区块链数字货币交易所,1个月开张,1个月摘牌,一个月退场;一家为共享经济公司,节奏与前一家公司几乎雷同。空出的办公室,闲置了2个月之久,几批创业团队来来走走,最终都不愿拿下。


2018,从年头到年尾,难以避免的高频词汇,无外乎“至暗时刻”“寒冬”“死亡”......


逆境多灾。但即便如此,铅笔道有一句话要赠送给所有创业者:小成靠苦难,中成靠磨难,大成靠灾难。灾难来临的时刻,就看你在做什么。如果你被灾难打败,那么失败是你的宿命;如果你打败了灾难,你会成为超级英雄。请不要惧怕灾难,灾难来临的时候,你收获的至暗时刻其实与真相一样多。


2018年,我们也曾经历自己的至暗时刻。穿越2018年,铅笔道的创业史上有了一个词叫至暗时刻。但最终我们坚持了下来,支撑我们度过苦难的便是这句话:创业并非99%都失败,只要你自己不放弃,100%会成功。而今,我们已经步入商业化正轨,即将实现盈亏平衡。我们想大声告诉大家:曾经最理想化的创新创业媒体,如今也终于走出了商业化“荒漠区”。


我们可以,谁都可以。我们穿越了至暗时刻,找到了铅笔道眼中的2018年真相。同时,我们也找了许多与铅笔道一样刚刚穿越至暗时刻的创新公司。过去一周,我们陆续收到了500位CEO的励志故事。在他们笔下,我们不仅感受到了创业的艰辛,更能感受到坚持的动能。


此时此刻,我们想把他们的励志精神分享给所有人。我们想致敬中国3000万创业者:用500位CEO眼中的至暗时刻,告诉你2018的全部真相(点击阅读原文或扫描下方二维码即可查看)



同时,我们向全国3000万创业者(国家统计局数据)发出邀请:写下你们曾经历过的至暗时刻,分享你们眼中的2018年真相:


你或许经历了前所未有的大溃败;


你或许曾是资本泡沫的牺牲品;


你或许在红利将尽的节点上错失了机遇;


你或许在寒冬中无力逆势增长……


请不要被灾难打败,跟随我们的脚步,告诉大家你眼中的2018年真相,与千千万万创业者分享。我们坚信,有了你们的加入,我们一定可以拼凑出更加完整的真相,一起穿越迷雾,找到2019破局复苏的方向。


截至2018年12月31日凌晨,我们会选出那个最有影响力的故事,并邀请该故事的主人公作为铅笔道真相大会的特别来宾,颁发特别奖项——感谢你在2018年年末为身处创投寒冬的创业者们带来一道温暖的光。



点击上方小程序了解更多真相大会详情


2018终需再见。我们不要只顾及眼下的黑暗,更要无限期待黑暗中随时漏下来的那道光。我们要坚信:脚下有泥,心中有光。心中有光,自会发光。


铅笔道成立三年,不说谎是我们的初心,寻找真相是我们的使命。


这一次我们想让更多人感受到真相的力量,感受到坚持的力量。


你好,2019,我们来了!

 

优质项目报道通道:创业者请加微信wujinna1015,务必注明项目名称;或发送BP至[email protected]


优质项目融资通道:创业者请加微信jiazongchaopku,务必注明项目名称;或发送BP至[email protected]


如需转载文章请联系铅笔道微信客服号铅笔道小铅笔(微信号:qianbidao2018)获取授权资质,否则我们将依法追究相关责任。


往期精彩文章


摩拜贱卖 资方终局:陪跑三年 无一赢家


算命投资 圈中奇事:不见面不尽调 八字合即打款 成败天注定


邻家便利店一夜猝死 陪葬股东:资方为600亿P2P平台 4月前暴雷高管入狱


钱荒,熬死的VC:90天仅募2000万 90位LP出资率10% 死于3周年前夕


钱荒,这是VC们“下跪”的年代:工资临断发 退出率1.5% carry无望挣管理费


又一百亿级P2P平台崩盘 :0元路由作饵 百万投资者入坑 400亿款追债无门


独家 | 从野兽到困兽,猩便利的生死之途:重债压身、现金趋负、卖身待售……


点击“阅读原文”,一起走进他们的2018年真相

登录查看更多
点赞 0

Current work on multimodal machine translation (MMT) has suggested that the visual modality is either unnecessary or only marginally beneficial. We posit that this is a consequence of the very simple, short and repetitive sentences used in the only available dataset for the task (Multi30K), rendering the source text sufficient as context. In the general case, however, we believe that it is possible to combine visual and textual information in order to ground translations. In this paper we probe the contribution of the visual modality to state-of-the-art MMT models by conducting a systematic analysis where we partially deprive the models from source-side textual context. Our results show that under limited textual context, models are capable of leveraging the visual input to generate better translations. This contradicts the current belief that MMT models disregard the visual modality because of either the quality of the image features or the way they are integrated into the model.

点赞 0
阅读1+

Many of the recent successful methods for video object segmentation (VOS) are overly complicated, heavily rely on fine-tuning on the first frame, and/or are slow, and are hence of limited practical use. In this work, we propose FEELVOS as a simple and fast method which does not rely on fine-tuning. In order to segment a video, for each frame FEELVOS uses a semantic pixel-wise embedding together with a global and a local matching mechanism to transfer information from the first frame and from the previous frame of the video to the current frame. In contrast to previous work, our embedding is only used as an internal guidance of a convolutional network. Our novel dynamic segmentation head allows us to train the network, including the embedding, end-to-end for the multiple object segmentation task with a cross entropy loss. We achieve a new state of the art in video object segmentation without fine-tuning on the DAVIS 2017 validation set with a J&F measure of 69.1%.

点赞 0
阅读1+

The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, agile management of network resource to maximize user experience, and extraction of fine-grained real-time analytics. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques to help managing the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research.

点赞 0
阅读1+

In this paper, we propose to disentangle and interpret contextual effects that are encoded in a pre-trained deep neural network. We use our method to explain the gaming strategy of the alphaGo Zero model. Unlike previous studies that visualized image appearances corresponding to the network output or a neural activation only from a global perspective, our research aims to clarify how a certain input unit (dimension) collaborates with other units (dimensions) to constitute inference patterns of the neural network and thus contribute to the network output. The analysis of local contextual effects w.r.t. certain input units is of special values in real applications. Explaining the logic of the alphaGo Zero model is a typical application. In experiments, our method successfully disentangled the rationale of each move during the Go game.

点赞 0
阅读1+

This paper describes the development of the Microsoft XiaoIce system, the most popular social chatbot in the world. XiaoIce is uniquely designed as an AI companion with an emotional connection to satisfy the human need for communication, affection, and social belonging. We take into account both intelligent quotient (IQ) and emotional quotient (EQ) in system design, cast human-machine social chat as decision-making over Markov Decision Processes (MDPs), and optimize XiaoIce for long-term user engagement, measured in expected Conversation-turns Per Session (CPS). We detail the system architecture and key components including dialogue manager, core chat, skills, and an empathetic computing module. We show how XiaoIce dynamically recognizes human feelings and states, understands user intents, and responds to user needs throughout long conversations. Since the release in 2014, XiaoIce has communicated with over 660 million users and succeeded in establishing long-term relationships with many of them. Analysis of large-scale online logs shows that XiaoIce has achieved an average CPS of 23, which is significantly higher than that of other chatbots and even human conversations.

点赞 1
阅读2+

This paper explains why deep learning can generalize well, despite large capacity and possible algorithmic instability, nonrobustness, and sharp minima, effectively addressing an open problem in the literature. Based on our theoretical insight, this paper also proposes a family of new regularization methods. Its simplest member was empirically shown to improve base models and achieve state-of-the-art performance on MNIST and CIFAR-10 benchmarks. Moreover, this paper presents both data-dependent and data-independent generalization guarantees with improved convergence rates. Our results suggest several new open areas of research.

点赞 0
阅读1+
Top