已有账号? 登录

Online reviews have become a vital source of information in purchasing a service (product). Opinion spammers manipulate reviews, affecting the overall perception of the service. A key challenge in detecting opinion spam is obtaining ground truth. Though there exists a large set of reviews online, only a few of them have been labeled spam or non-spam. In this paper, we propose spamGAN, a generative adversarial network which relies on limited set of labeled data as well as unlabeled data for opinion spam detection. spamGAN improves the state-of-the-art GAN based techniques for text classification. Experiments on TripAdvisor dataset show that spamGAN outperforms existing spam detection techniques when limited labeled data is used. Apart from detecting spam reviews, spamGAN can also generate reviews with reasonable perplexity.

点赞 0
阅读1+

Deep learning achieves state-of-the-art results in many tasks in computer vision and natural language processing. However, recent works have shown that deep networks can be vulnerable to adversarial perturbations, which raised a serious robustness issue of deep networks. Adversarial training, typically formulated as a robust optimization problem, is an effective way of improving the robustness of deep networks. A major drawback of existing adversarial training algorithms is the computational overhead of the generation of adversarial examples, typically far greater than that of the network training. This leads to the unbearable overall computational cost of adversarial training. In this paper, we show that adversarial training can be cast as a discrete time differential game. Through analyzing the Pontryagin's Maximal Principle (PMP) of the problem, we observe that the adversary update is only coupled with the parameters of the first layer of the network. This inspires us to restrict most of the forward and back propagation within the first layer of the network during adversary updates. This effectively reduces the total number of full forward and backward propagation to only one for each group of adversary updates. Therefore, we refer to this algorithm YOPO (You Only Propagate Once). Numerical experiments demonstrate that YOPO can achieve comparable defense accuracy with approximately 1/5 ~ 1/4 GPU time of the projected gradient descent (PGD) algorithm. Our codes are available at https://https://github.com/a1600012888/YOPO-You-Only-Propagate-Once.

点赞 0
阅读1+

Neural network based end-to-end text to speech (TTS) has significantly improved the quality of synthesized speech. Prominent methods (e.g., Tacotron 2) usually first generate mel-spectrogram from text, and then synthesize speech from mel-spectrogram using vocoder such as WaveNet. Compared with traditional concatenative and statistical parametric approaches, neural network based end-to-end models suffer from slow inference speed, and the synthesized speech is usually not robust (i.e., some words are skipped or repeated) and lack of controllability (voice speed or prosody control). In this work, we propose a novel feed-forward network based on Transformer to generate mel-spectrogram in parallel for TTS. Specifically, we extract attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length regulator to expand the source phoneme sequence to match the length of target mel-spectrogram sequence for parallel mel-spectrogram generation. Experiments on the LJSpeech dataset show that our parallel model matches autoregressive models in terms of speech quality, nearly eliminates the problem of word skipping and repeating in particularly hard cases, and can adjust voice speed smoothly. Most importantly, compared with autoregressive Transformer TTS, our model speeds up the mel-spectrogram generation by 270x and the end-to-end speech synthesis by 38x. Therefore, we call our model FastSpeech. We will release the code on Github (anonymous.url). Synthesized speech samples can be found in https://speechresearch.github.io/fastspeech/.

点赞 0
阅读1+

Recent progress in machine learning techniques have revived interest in building artificial general intelligence using these particular tools. There has been a tremendous success in applying them for narrow intellectual tasks such as pattern recognition, natural language processing and playing Go. The latter application vastly outperforms the strongest human player in recent years. However, these tasks are formalized by people in such ways that it has become "easy" for automated recipes to find better solutions than humans do. In the sense of John Searle's Chinese Room Argument, the computer playing Go does not actually understand anything from the game. Thinking like a human mind requires to go beyond the curve fitting paradigm of current systems. There is a fundamental limit to what they can achieve currently as only very specific problem formalization can increase their performances in particular tasks. In this paper, we argue than one of the most important aspects of the human mind is its capacity for logical thinking, which gives rise to many intellectual expressions that differentiate us from animal brains. We propose to model the emergence of logical thinking based on Piaget's theory of cognitive development.

点赞 0
阅读1+

Performing knowledge transfer from a large teacher network to a smaller student is a popular task in modern deep learning applications. However, due to growing dataset sizes and stricter privacy regulations, it is increasingly common not to have access to the data that was used to train the teacher. We propose a novel method which trains a student to match the predictions of its teacher without using any data or metadata. We achieve this by training an adversarial generator to search for images on which the student poorly matches the teacher, and then using them to train the student. Our resulting student closely approximates its teacher for simple datasets like SVHN, and on CIFAR10 we improve on the state-of-the-art for few-shot distillation (with 100 images per class), despite using no data. Finally, we also propose a metric to quantify the degree of belief matching between teacher and student in the vicinity of decision boundaries, and observe a significantly higher match between our zero-shot student and the teacher, than between a student distilled with real data and the teacher. Code available at: https://github.com/polo5/ZeroShotKnowledgeTransfer

点赞 0
阅读0+

Advertising and feed ranking are essential to many Internet companies such as Facebook and Sina Weibo. Among many real-world advertising and feed ranking systems, click through rate (CTR) prediction plays a central role. There are many proposed models in this field such as logistic regression, tree based models, factorization machine based models and deep learning based CTR models. However, many current works calculate the feature interactions in a simple way such as Hadamard product and inner product and they care less about the importance of features. In this paper, a new model named FiBiNET as an abbreviation for Feature Importance and Bilinear feature Interaction NETwork is proposed to dynamically learn the feature importance and fine-grained feature interactions. On the one hand, the FiBiNET can dynamically learn the importance of features via the Squeeze-Excitation network (SENET) mechanism; on the other hand, it is able to effectively learn the feature interactions via bilinear function. We conduct extensive experiments on two real-world datasets and show that our shallow model outperforms other shallow models such as factorization machine(FM) and field-aware factorization machine(FFM). In order to improve performance further, we combine a classical deep neural network(DNN) component with the shallow model to be a deep model. The deep FiBiNET consistently outperforms the other state-of-the-art deep models such as DeepFM and extreme deep factorization machine(XdeepFM).

点赞 0
阅读0+

Training large deep neural networks on massive datasets is very challenging. One promising approach to tackle this issue is through the use of large batch stochastic optimization. However, our understanding of this approach in the context of deep learning is still very limited. Furthermore, the current approaches in this direction are heavily hand-tuned. To this end, we first study a general adaptation strategy to accelerate training of deep neural networks using large minibatches. Using this strategy, we develop a new layer-wise adaptive large batch optimization technique called LAMB. We also provide a formal convergence analysis of LAMB as well as the previous published layerwise optimizer LARS, showing convergence to a stationary point in general nonconvex settings. Our empirical results demonstrate the superior performance of LAMB for BERT and ResNet-50 training. In particular, for BERT training, our optimization technique enables use of very large batches sizes of 32868; thereby, requiring just 8599 iterations to train (as opposed to 1 million iterations in the original paper). By increasing the batch size to the memory limit of a TPUv3 pod, BERT training time can be reduced from 3 days to 76 minutes. Finally, we also demonstrate that LAMB outperforms previous large-batch training algorithms for ResNet-50 on ImageNet; obtaining state-of-the-art performance in just a few minutes.

点赞 0
阅读0+

In many machine learning applications, we are faced with incomplete datasets. In the literature, missing data imputation techniques have been mostly concerned with filling missing values. However, the existence of missing values is synonymous with uncertainties not only over the distribution of missing values but also over target class assignments that require careful consideration. The objectives of this paper are twofold. First, we proposed a method for generating imputations from the conditional distribution of missing values given observed values. Second, we use the generated samples to estimate the distribution of target assignments given incomplete data. In order to generate imputations, we train a simple and effective generator network to generate imputations that a discriminator network is tasked to distinguish. Following this, a predictor network is trained using imputed samples from the generator network to capture the classification uncertainties and make predictions accordingly. The proposed method is evaluated on CIFAR-10 image dataset as well as two real-world tabular classification datasets, under various missingness rates and structures. Our experimental results show the effectiveness of the proposed method in generating imputations, as well as providing estimates for the class uncertainties in a classification task when faced with missing values.

点赞 0
阅读0+
深度学习—从算法到实战,涵盖深度学习算法和应用实例,包括计算机视觉的目标检测、图像生成,自然语言处理的文本自动摘要等,帮助学员了解、理解、掌握深度学习的基础和前沿算法,并拥有深度学习算法实战经验。本课程由完整全面、脉络清晰的深度学习核心算法入门,到当前学界、工业界热门的深度学习应用实战,有效提高学生解决实际问题的能力。通过学习本课程,学员可以:掌握深度学习核心算法技术;掌握面向不用场景任务的深度学习应用技术;熟悉各种不同深度神经网络的拓扑结构及应用;熟悉前沿深度学习强化学习等热点技术,把握深度学习的技术发展趋势;提升解决深度学习实际问题的能力。 本次课程由专知团队携人工智能领域一线教授博士精心制作,重磅推出!这是一次毫无保留的传授与交流,人工智能未来已来,学习永不止步。希望能与各位一起迎接2019,共同成长。 https://study.163.com/course/introduction/1006498024.htm
登录查看的更多。 返回顶部
本周荟萃主题
深度学习
机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。
机器学习
“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。”

——中文维基百科
强化学习
强化学习 (Reinforcement learning) 是受到行为心理学启发,机器学习中研究个体 (agent) 如何在环境中采取行动以最大化奖赏 (reward) 的领域。

这一问题由于其普遍性,在许多领域中都有研究,例如博弈论,控制论,运筹学,信息论,等等。
信息推荐
信息推荐,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。信息推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。俗称推荐系统。
卷积神经网络

卷积神经网络是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,[1]对于大型图像处理有出色表现。
机器翻译
机器翻译,又称为自动翻译,是利用计算机将一种自然语言(源语言)转换为另一种自然语言(目标语言)的过程。它是计算语言学的一个分支,是人工智能的终极目标之一,具有重要的科学研究价值。
计算机视觉
计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。
图像识别
从图像中提取出有意义、有实用价值的信息。
知识图谱
中文知识图谱(Chinese Knowledge Graph),最早起源于Google Knowledge Graph。知识图谱本质上是一种语义 网络。其结点代表实体(entity)或者概念(concept),边代表实体/概念之间的各种语义关系。