中文版《动手学深度学习》9月最新版、代码、ppt、视频分享

2019 年 9 月 12 日 深度学习与NLP
中文版《动手学深度学习》9月最新版、代码、ppt、视频分享

    几乎所有的深度学习教材资源都是英文版的,这对于很多国内学习深度学习的朋友来说是一个艰难的挑战。今天就推荐一本中文版的深度学习教材《动手学深度学习》。


    文末附录本书9月最新、免费中文版教材、随书代码、视频教材、课程ppt下载地址。


内容简介

    本书⾯向希望了解深度学习,特别是对实际使⽤深度学习感兴趣的⼤学⽣、⼯程师和研究⼈员。本书并不要求你有任何深度学习或者机器学习的背景知识,我们将从头开始解释每⼀个概念。虽然深度学习技术与应⽤的阐述涉及了数学和编程,但你只需了解基础的数学和编程,例如基础的线性代数、微分和概率,以及基础的 Python 编程。


本书内容⼤体可以分为三部分:
    • 第⼀部分(第 1 章⾄第 3 章)涵盖预备⼯作和基础知识。第 1 章介绍了深度学习的背景和本书的使⽤⽅法。第 2 章提供了动⼿学深度学习所需要的预备知识,例如如何获取并运⾏书中的代码。第 3 章包括了深度学习最基础的概念和技术,例如多层感知机和模型正则化。如果你时间有限,并且只希望了解深度学习最基础的概念和技术,那么你只需阅读第⼀部分。
    • 第⼆部分(第 4 章⾄第 6 章)关注现代深度学习技术。第 4 章描述了深度学习计算的各个重要组成部分,并为之后实现更复杂的模型打下基础。第 5 章解释了近年来令深度学习在计算机视觉领域⼤获成功的卷积神经⽹络。第 6 章阐述了近年来常⽤于处理序列数据的循环神经⽹络。阅读第⼆部分有助于掌握现代深度学习技术。
    • 第三部分(第 7 章⾄第 10 章)讨论计算性能和应⽤。第 7 章评价了各种⽤来训练深度学习模型的优化算法。第 8 章检验了影响深度学习计算性能的⼏个重要因素。第 9 章和第 10 章分别列举了深度学习在计算机视觉和⾃然语⾔处理中的重要应⽤。这部分内容可供你根据兴趣选择阅读。


    本书基本架构如下图所示: 

本书目录

本书pdf、代码等资源下载地址

    公众号“深度学习与NLP”回复“dlch19”获取书籍、代码、视频教程及ppt等资源下载地址。

往期精品内容推荐

Tilt Five-AR游戏眼镜-给你带来全新真实的游戏体验

简明深度学习学习资料分享:从基础到进阶

2018-深度学习与自然语言处理-最新教材推荐

基于Pre-trained模型加速模型学习的6点建议

五一重磅-李飞飞团队主讲-CS231-2018(春)基于CNN的视觉识别课程分享

重磅干货-Richard S. Sutton-2018年强化学习教程免费下载

前沿分享-基于区块链技术的机器学习行业概述

人工智能与机器学习技术在医疗保健行业中的应用

元学习(Meta Learning)最全论文、视频、书籍资源整理

最全中文自然语言处理数据集、平台和工具整理

图神经网络(GNN)必读论文及最新进展跟踪

《自动化机器学习:方法,系统和挑战》-最新版-免费下载

Yoshua Bengio-AGI的方法、阻碍和未来的方向

扫描下方二维码可以订阅哦!

DeepLearning_NLP

深度学习与NLP

       商务合作请联系微信号:lqfarmerlq

登录查看更多
45

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

【导读】IanGoodfellow、YoshuaBengio、AaronCourville的《深度学习》花书被奉为AI圣经。但是要掌握这本书却并非易事。MingchaoZhu同学基于数学推导和产生原理重新描述了书中的概念,并用Python (numpy 库为主) 复现了书本内容,在Github上开放,欢迎大家查看学习。

Deep Learning

深度学习》是深度学习领域唯一的综合性图书,全称也叫做深度学习 AI圣经(Deep Learning),由三位全球知名专家IanGoodfellow、YoshuaBengio、AaronCourville编著,全书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等,并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。最后,深度学习全书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型,适用于相关专业的大学生或研究生使用。

可以下载《深度学习》的中文版pdf和英文版pdf直接阅读。


《深度学习》可以说是深度学习与人工智能的入门宝典,许多算法爱好者、机器学习培训班、互联网企业的面试,很多都参考这本书。但本书晦涩,加上官方没有提供代码实现,因此某些地方较难理解。本站基于数学推导和产生原理重新描述了书中的概念,并用Python (numpy 库为主) 复现了书本内容(推导过程和代码实现均见pdf文件,重要部分的实现代码也放入code文件夹中)。

然而我水平有限,但我真诚地希望这项工作可以帮助到更多人学习深度学习算法。我需要大家的建议和帮助。如果你在阅读中遇到有误或解释不清的地方,希望可以汇总你的建议,提issue (最好不要一个一个地提)。如果你也想加入这项工作书写中或有其他问题,可以联系我的邮箱:deityrayleigh@gmail.com。

写的过程中参考了较多网上优秀的工作,所有参考资源保存在了reference.txt文件中。

| 中文章节 | 英文章节 | 下载
(含推导与代码实现) | | ------------ | ------------ | ------------ | | 第一章 前言 | 1 Introduction | | | 第二章 线性代数 | 2 Linear Algebra | pdf | | 第三章 概率与信息论 | 3 Probability and Information Theory | pdf | | 第四章 数值计算 | 4 Numerical Computation | pdf | | 第五章 机器学习基础 | 5 Machine Learning Basics | pdf | | 第六章 深度前馈网络 | 6 Deep Feedforward Networks | pdf | | 第七章 深度学习中的正则化 | 7 Regularization for Deep Learning | pdf | | 第八章 深度模型中的优化 | 8 Optimization for Training Deep Models | pdf | | 第九章 卷积网络 | 9 Convolutional Networks | pdf | | 第十章 序列建模:循环和递归网络 | 10 Sequence Modeling: Recurrent and Recursive Nets | | | 第十一章 实践方法论 | 11 Practical Methodology | | | 第十二章 应用 | 12 Applications | | | 第十三章 线性因子模型 | 13 Linear Factor Models | | | 第十四章 自编码器 | 14 Autoencoders | | | 第十五章 表示学习 | 15 Representation Learning | | | 第十六章 深度学习中的结构化概率模型 | 16 Structured Probabilistic Models for Deep Learning | | | 第十七章 蒙特卡罗方法 | 17 Monte Carlo Methods | | | 第十八章 直面配分函数 | 18 Confronting the Partition Function | | | 第十九章 近似推断 | 19 Approximate Inference | | | 第二十章 深度生成模型 | 20 Deep Generative Models | |

尚未上传的章节会在后续陆续上传。

成为VIP会员查看完整内容
0
186
小贴士
相关VIP内容
专知会员服务
68+阅读 · 2020年6月28日
专知会员服务
103+阅读 · 2020年4月26日
专知会员服务
50+阅读 · 2020年1月15日
复旦大学邱锡鹏老师《神经网络与深度学习》书册最新版
相关论文
Zequn Sun,Chengming Wang,Wei Hu,Muhao Chen,Jian Dai,Wei Zhang,Yuzhong Qu
10+阅读 · 2019年11月20日
Meta Learning for End-to-End Low-Resource Speech Recognition
Jui-Yang Hsu,Yuan-Jui Chen,Hung-yi Lee
15+阅读 · 2019年10月26日
FocusNet: An attention-based Fully Convolutional Network for Medical Image Segmentation
Chaitanya Kaul,Suresh Manandhar,Nick Pears
4+阅读 · 2019年2月8日
An Attention-Gated Convolutional Neural Network for Sentence Classification
Yang Liu,Lixin Ji,Ruiyang Huang,Tuosiyu Ming,Chao Gao,Jianpeng Zhang
4+阅读 · 2018年12月28日
Jointly Multiple Events Extraction via Attention-based Graph Information Aggregation
Xiao Liu,Zhunchen Luo,Heyan Huang
5+阅读 · 2018年9月24日
Furu Wei
4+阅读 · 2018年5月10日
Tong Yu,Branislav Kveton,Zheng Wen,Hung Bui,Ole J. Mengshoel
4+阅读 · 2018年4月26日
John E. Vargas-Muñoz,Ananda S. Chowdhury,Eduardo B. Alexandre,Felipe L. Galvão,Paulo A. Vechiatto Miranda,Alexandre X. Falcão
9+阅读 · 2018年1月30日
Brian Kenji Iwana,Seiichi Uchida
6+阅读 · 2018年1月25日
Fahim Irfan Alam,Jun Zhou,Alan Wee-Chung Liew,Xiuping Jia,Jocelyn Chanussot,Yongsheng Gao
10+阅读 · 2017年12月27日
Top