时空时间序列预测在广泛的现实应用中发挥着关键作用。尽管在这一领域已经取得了显著进展,但充分捕捉和利用时空异质性仍然是一个根本性挑战。因此,我们提出了一种新颖的异质性信息元参数学习方案。具体来说,我们的方法通过学习空间和时间嵌入来隐式捕捉时空异质性,这可以看作是一个聚类过程。然后,提出了一种新颖的时空元参数学习范式,从元参数池中学习时空特定参数,并以捕捉到的异质性为指导。基于这些思想,我们开发了用于时空时间序列预测的异质性信息时空元网络(HimNet)。在五个广泛使用的基准上进行的大量实验表明,我们的方法在表现出卓越解释性的同时,达到了最先进的性能。我们的代码可在https://github.com/XDZhelheim/HimNet获取。

成为VIP会员查看完整内容
19

相关内容

【ICML2024】TIMEX++: 通过信息瓶颈学习时间序列解释
专知会员服务
17+阅读 · 2024年5月16日
【AAAI2023】基于Dirichlet元模型的事后不确定性学习
专知会员服务
16+阅读 · 2022年12月16日
【NeurIPS2022】分布式自适应元强化学习
专知会员服务
24+阅读 · 2022年10月8日
【AAAI2022】基于变分信息瓶颈的图结构学习
专知会员服务
20+阅读 · 2021年12月18日
【AAAI2023】用于图对比学习的谱特征增强
专知
20+阅读 · 2022年12月11日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
A Survey of Large Language Models
Arxiv
494+阅读 · 2023年3月31日
Arxiv
81+阅读 · 2023年3月26日
Arxiv
180+阅读 · 2023年3月24日
Arxiv
25+阅读 · 2023年3月17日
VIP会员
相关VIP内容
【ICML2024】TIMEX++: 通过信息瓶颈学习时间序列解释
专知会员服务
17+阅读 · 2024年5月16日
【AAAI2023】基于Dirichlet元模型的事后不确定性学习
专知会员服务
16+阅读 · 2022年12月16日
【NeurIPS2022】分布式自适应元强化学习
专知会员服务
24+阅读 · 2022年10月8日
【AAAI2022】基于变分信息瓶颈的图结构学习
专知会员服务
20+阅读 · 2021年12月18日
相关资讯
【AAAI2023】用于图对比学习的谱特征增强
专知
20+阅读 · 2022年12月11日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
相关论文
A Survey of Large Language Models
Arxiv
494+阅读 · 2023年3月31日
Arxiv
81+阅读 · 2023年3月26日
Arxiv
180+阅读 · 2023年3月24日
Arxiv
25+阅读 · 2023年3月17日
微信扫码咨询专知VIP会员