深度学习任务面临非平衡数据问题?试试这个简单方法

2018 年 5 月 30 日 数盟

对于数据科学或机器学习研究者而言,当解决任何机器学习问题时,可能面临的最大问题之一就是训练数据不平衡的问题。本文将尝试使用图像分类问题来揭示训练数据中不平衡类别的奥秘。

数据不平衡问题是什么?

在一个分类问题中,当你想要预测一个或多个类中的样本数量极少时,可能会遇到数据中类不平衡的问题,即部分类的样本数量远远大于其它类中的样本数量。

例子

欺诈预测(真实交易的欺诈数量要低得多);

自然灾害预测(坏事件发生的频率将远远低于好事);

识别图像分类中的恶性肿瘤(具有肿瘤的图像将比训练样本内的无肿瘤的图像少得多);

为什么这会是个问题?

不平衡课程造成问题主要是由于以下两个原因:

由于模型/算法从来没有充分地查看全部类别信息,对于实时不平衡的类别没有得到最优化的结果;

由于少数样本类的观察次数极少,这会产生一个验证或测试样本的问题,即很难在类中进行表示;

解决这个问题的方法有哪些?

解决这个问题的方法主要有三种,三种各有各自的优缺点:

下采样(Undersampling):随机删除具有足够观察多样本的类,以便数据中类的数量比较平衡。虽然这种方法非常简单,但很有可能删除的数据中可能包含有关预测的重要信息。

过采样(Oversampling):对于不平衡类(样本数少的类),随机地增加观测样本的数量,这些观测样本只是现有样本的副本,虽然增加了样本的数量,但过采样可能导致训练数据过拟合。

合成取样(SMOT):该技术要求综合地制造不平衡类的样本,类似于使用最近邻分类。问题是当观察的数目是极其罕见的类时不知道怎么做。

尽管每种方法都有各自的优点,但没有什么固定的使用方式,需要根据实际问题不断自己尝试。现在将使用深度学习特定的图像分类问题来详细研究这个问题。

图像分类中的不平衡类

在本节中,将分析一个图像分类问题(其中存在不平衡类问题),然后使用一种简单有效的技术来解决它。

问题:在kaggle上选择了“驼背鲸识别挑战”任务,期望解决不平衡类别的挑战(理想情况下,所分类的鲸鱼数量少于未分类的鲸类)。

Kagele上任务说明:在这场比赛中,面临的挑战是要建立一个算法来识别图像中的鲸鱼种类。将分析Happy Whale数据库(包含25,000多张图像),这些数据来自研究机构和公共贡献者。通过竞赛,你将有助于为全球海洋哺乳动物种群动态开启丰富的理解领域。

查看Happy Whale数据集

由于这是一个多标签图像分类问题,首先想要检查数据是如何在类中分布的。

上图表明,在4251张训练图像中,每个类只有一张图像的超过了2000张。还有一些类只有2~5张图像。可见这是一个严重的不平衡类问题。我们不能期望深度学习模型每个类别仅使用一张图像进行训练。这也会产生一个问题,即如何在训练和验证样本之间创建一个分界线,理想情况下希望每个类都在训练样本和验证样本中都有表示。

接下来应该做什么?

本文考虑了两个特别的选项:

选项1:对训练样本进行严格的数据增强(只需要针对特定类的数据增强,单这可能无法完全解决本文的问题)。

选项2:类似于之前提到的过采样技术。只是使用不同的图像增强技术将不平衡类的图像复制到训练数据中15次。

在开始使用选项2处理数据之前,可以从训练样本中查看少量图像。

从图像中可以看到,图像是特定于鲸鱼的尾巴,因此,识别将可能与图像的方向有关。同时注意到数据中有很多图像是特定的黑白或只有R/G/B通道。

根据这些观察结果,使用以下代码对训练样本中不平衡类的图像进行小幅改动并保存:

以上代码对不平衡类中的每张图像(频率小于10)都进行如下处理:

将每张图像的增强副本保存为R / B&G ;

保存每张图像的增强副本;

保存每张图像未锐化的增强副本;

在上面的代码中可以看到,使用pillow库来严格执行此练习,现在已经为所有不平衡的类分配了至少10个样本。接下来进行训练。

图像增强:只想确保模型能够获得鲸鱼fluke的详细视图。为此,将缩放合并成图像增强。

学习率设定:从图中可以看到,将学习率定为0.01时效果最好。

使用Resnet50模型(第一层参数不变)进行了很少的迭代训练就能取得很好的效果,这是由于imagenet数据库中也有鲸鱼图像。

测试数据集上效果如何?

在kaggle排行榜上可以看到模型在测试集上的效果,本文提出的解决方案在本次比赛中排名34,平均精度均值(MAP)为0.41928。

结论

有时候,最简单的方法是最合乎逻辑的(如果你没有更多的数据,只需要复制现有的数据,并有轻微的变化即可),也是最有效的。


登录查看更多
6

相关内容

最新《多任务学习》综述,39页pdf
专知会员服务
258+阅读 · 2020年7月10日
【文献综述】深度学习目标检测方法及其主流框架综述
专知会员服务
114+阅读 · 2020年6月26日
模型压缩究竟在做什么?我们真的需要模型压缩么?
专知会员服务
26+阅读 · 2020年1月16日
【机器学习课程】机器学习中的常识性问题
专知会员服务
72+阅读 · 2019年12月2日
零样本图像分类综述 : 十年进展
专知会员服务
122+阅读 · 2019年11月16日
生成式对抗网络GAN异常检测
专知会员服务
114+阅读 · 2019年10月13日
一文教你如何处理不平衡数据集(附代码)
大数据文摘
10+阅读 · 2019年6月2日
非平衡数据集 focal loss 多类分类
AI研习社
33+阅读 · 2019年4月23日
机器学习中如何处理不平衡数据?
机器之心
13+阅读 · 2019年2月17日
深度学习训练数据不平衡问题,怎么解决?
AI研习社
7+阅读 · 2018年7月3日
样本不平衡数据集防坑骗指南
人工智能前沿讲习班
8+阅读 · 2018年6月7日
【干货】机器学习中样本比例不平衡的处理方法
机器学习研究会
8+阅读 · 2018年1月14日
关于处理样本不平衡问题的Trick整理
机器学习算法与Python学习
14+阅读 · 2017年12月3日
干货|深度学习目标检测的主要问题和挑战!
全球人工智能
6+阅读 · 2017年9月6日
A Survey on Bayesian Deep Learning
Arxiv
60+阅读 · 2020年7月2日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
3+阅读 · 2017年7月6日
VIP会员
相关VIP内容
最新《多任务学习》综述,39页pdf
专知会员服务
258+阅读 · 2020年7月10日
【文献综述】深度学习目标检测方法及其主流框架综述
专知会员服务
114+阅读 · 2020年6月26日
模型压缩究竟在做什么?我们真的需要模型压缩么?
专知会员服务
26+阅读 · 2020年1月16日
【机器学习课程】机器学习中的常识性问题
专知会员服务
72+阅读 · 2019年12月2日
零样本图像分类综述 : 十年进展
专知会员服务
122+阅读 · 2019年11月16日
生成式对抗网络GAN异常检测
专知会员服务
114+阅读 · 2019年10月13日
相关资讯
一文教你如何处理不平衡数据集(附代码)
大数据文摘
10+阅读 · 2019年6月2日
非平衡数据集 focal loss 多类分类
AI研习社
33+阅读 · 2019年4月23日
机器学习中如何处理不平衡数据?
机器之心
13+阅读 · 2019年2月17日
深度学习训练数据不平衡问题,怎么解决?
AI研习社
7+阅读 · 2018年7月3日
样本不平衡数据集防坑骗指南
人工智能前沿讲习班
8+阅读 · 2018年6月7日
【干货】机器学习中样本比例不平衡的处理方法
机器学习研究会
8+阅读 · 2018年1月14日
关于处理样本不平衡问题的Trick整理
机器学习算法与Python学习
14+阅读 · 2017年12月3日
干货|深度学习目标检测的主要问题和挑战!
全球人工智能
6+阅读 · 2017年9月6日
Top
微信扫码咨询专知VIP会员