欧洲40%的AI初创公司完全不智能 | 巴克莱2019 AI报告

3 月 14 日 大数据文摘

大数据文摘出品

作者:周素云、蒋宝尚


“The future is already here – it’s just unevenly distributed”

——William Gibson


近几年,随着人工智能的发展, 各国、各行业都在积极展开对该领域的探索,谁都不想输在起跑线。  


谁说人工智能就没有泡沫了, 下面这篇报告中就指出“欧洲40%的AI初创企业并不智能”。


这一数据让很多人始料不及,但也有学者称,40%还是说少了。


这份报告由巴克莱银行赞助,MMC的风险投资机构撰写,报告一共有99页,总体分为4个部分,包括:人工智能发展史、人工智能的发展现状、人工智能革新者、以及人工智能的未来。

大数据微信公众号后台对话框内回复“巴克莱”下载报告完整版


报告显示:在2830家标榜为人工智能的欧洲公司中,其中1580家符合人工智能公司的定义。MMC研究主管David Kelnar表示:他们对每家公司的产品、网站、生产材料、生产日志进行调查发现,有40%的公司没有任何人工智能的“痕迹”。


他还表示,如果一家公司被标榜为人工智能企业,那么这家企业就会比一般的公司多融资15%~50%。一些公司并不急于把自己转型为以人工智能为主导,只是第三方网站在评估的时候会把他们这么分类而已。


根据该调查,每12个创业公司中就有一个把AI作为其产品或服务的一部分。除此之外,约有12%的大公司在其业务中使用AI应用程序,而去年这一数字仅为4%。  


最受欢迎的AI产品是聊天机器人,自动化的流程工具排在第二位,其在处理保险索赔和欺诈检测等简单的管理任务发挥着重要的作用。


当公司部署AI产品时,最常用的场景是利用视觉识别以及语音合成做出预测和决策。虽然这会大大吸引风险投资的眼光,但对大多数人来说人工智能如何运作或定义尚不清楚。当然,这对于一些创业公司来说是一个优势。  


以下是文摘菌从报告中摘抄出来的几个重要的观点,请欣赏!


AI时代:在各种业务中部署AI是一种趋势



AI是一个通用术语,指的是表现出智能行为的硬件或软件。Basic AI自20世纪50年代以来就已经存在了,它通过基于规则的程序在有限的上下文中显示智能。


基于规则的系统在现实世界中有许多的挑战,从医学诊断到目标检测,都过于复杂或微妙,无法通过人们所写规则的程序来解决。·


深度学习将特征提取和优化整合到了一块


机器学习是人工智能的一个子集,所有机器学习都是人工智能,但并不是所有人工智能都是机器学习。机器学习使程序能够通过训练来学习,而不是按照规则进行编程。


机器学习现有超过15种方法。流行的方法包括随机森林、贝叶斯网络和支持向量机。深度学习是机器学习的一个子集,它在计算机视觉领域取得了突破性成果。同样所有的深度学习都是机器学习,但并非所有机器学习都是深度学习。


深度学习模拟大脑,而不是世界。人工神经元网络处理输入数据,提取与问题相关的特征和变量,通过训练提高结果。



由于大多数业务流程和消费者应用程序涉及知识管理,推理,规划,沟通或感知,因此AI的进步带来了许多重要的新功能。


企业转型AI


AI采用量在12个月内增加了两倍,有1/7的大公司布局了AI。两年内,会有2/3的大公司将会实施AI计划。


人工智能将成为科技史上最快的范式转变。在三年内,有AI业务的企业比例将从1/4增加到1/3。企业正在向云计算模式转变,全球技术供应商提供即插即用的人工智能服务。


七分之一大公司布局AI


在全球范围内,由于政府参与、数据优势等等原因,中国在人工智能应用方面处于领先地位。亚洲采用人工智能的企业数量是北美企业的两倍。


金融服务和高科技公司在AI应用中保持领先地位,零售、医疗和媒体等正在积极引进,政府机构、教育公司和慈善机构也正在接受人工智能。


       

AI在各部门的运用百分比


AI在企业中的运用范围也从最初的IT部门跨越到人力, 销售,供应链等部门,企业开始采用多种AI应用程序, 有1/10企业使用十种或十种以上的AI应用。


两年前, 公司的最高决策层在AI项目的启动方案、技术决策和资金批准方面占用重要地位, 现在相关决策已可以移交到IT项目部。




AI人才也成为企业转型的关键,近一半的公司倾向于从第三方购买人工智能解决方案,而1/3的公司则愿意在内部建立人工智能解决方案。只有1/10的公司愿意等待适用于他们的AI产品出现。随着人工智能的发展,企业的关注点也从利用AI提高收入转向降低成本。


人才竞争


开发者学历对比


仅仅两年, 人工智能人才的需求增加了一倍, 虽然人才需求和供给均在增长,但AI人才库仍然很小,缺乏可用的人才是他们面临的重要挑战。


AI人才需有较高的数学, 统计和编程能力, 拥有博士学位的AI开发者要比其他开发人员的程度高。


高工资也成为促进AI人才供给增加的强大动力, 45%的AI从业者的平均工资在过去三年均增长了20%以上。 技术和金融服务业吸收60%的AI人才,赢得人才争夺战才是真正的赢家。


AI技术现状:我们正处于后GPU时代


谷歌的第二代TPU减少了训练图像所需的时间


当前自定义芯片正在集成到人工智能硬件当中,具有“tensor 体系结构”的硬件正在加速深入学习人工智能。为了支持使用流行的深度学习框架。包括英伟达和Google在内的供应商正在优化或定制硬件。


我们正在进入后GPU时代。一些大的硬件制造商正在创造新的计算机处理器,自定义芯片赋予更多的性能和用途。


随着量子计算的成熟,它将为人工智能的进步创造更深远的机会,并使人类能够解决以前难以解决的问题。量子计算虽然刚刚起步,但却在迅速发展。目前,研究人员在量子计算机上已经开发了性能更佳的神经网络。


仅训练40天,AlphaGO Zero全面取代AlphaGO,成为世界上最好的围棋玩家。


强化学习(RL)是人工智能的另一种研究方法,RL系统不是从训练数据中学习,而是通过奖励来实现特定目标的进展。例如DeepMind开发的Alpha系列的强化学习系统,在与人类对决的过程中展现出了无与伦比的能力。在2019年,RL的发展目标会是智能协作。


迁移学习(TL)能够提供非常强的初始性能以及快速的迭代和良好的长期结果。 


生成性对抗网络(GAN)将重新定义内容创建。作为一种新兴的人工智能软件技术,GAN能够以极高的保真度生成包括图片和视频在内的“人工媒体”。 


欧洲AI初创企业:3/5的AI创业公司处于天使轮


      

欧洲AI企业融资现状


欧洲孵化了将近1600多家AI软件公司, 在2013年, 50个创业公司才有一家采用AI,而今天, 每12家中就有一家将AI技术作为公司核心,整个欧洲的创业生态也是如此。


欧洲有约3/5的AI创业公司处于天使和种子阶段,约1/6的公司已经从天使轮进入成长阶段。 尤其在英国、德国、法国这样拥有大量人工智能公司的地区,1/5已成为成长型公司。


欧洲AI创业公司数量


英国拥有的AI创业公司数量分别为德国和法国的两倍,成为欧洲AI技术发展核心基地,带动了整个欧洲AI技术的发展。德国、法国及其他国家有望在未来十年扩大其AI的影响力。


AI企业中各行业占比情况


这些创业公司涉及医疗、金融服务、媒体、娱乐等行业,其中医疗成为众多创业公司的焦点。 英国成为欧洲医疗AI创业的核心地区,总数占欧洲大陆的2/3。


AI的未来影响力


人工智能的基本特征可概括为四点, 创新(新产品和服务)、效能(更有效地执行任务)、速度(更快地完成任务)、和可伸缩性(不受人类能力的限制)。


这些特征将会对社会,经济,就业和消费产生重要影响。


AI可以通过其优势对市场和公司造成多方面的影响


AI企业的出现, 创造出了新的市场参与者;新的商业模式及其新的商业成功的因素;转变部门价值链;公司竞争定价;同时带来组织设计和技能的转变;加速创新周期;对传统企业造成较大的威胁 。


在AI创造出良好机遇的同时,AI的发展所带来的威胁也不容忽视。人工智能的发展将会取代部分工作岗位;有偏见的制度可能会增加不平等;人造媒体会破坏信任;自主武器可能会加剧冲突。


实习/全职编辑记者招聘ing

加入我们,亲身体验一家专业科技媒体采写的每个细节,在最有前景的行业,和一群遍布全球最优秀的人一起成长。坐标北京·清华东门,在大数据文摘主页对话页回复“招聘”了解详情。简历请直接发送至[email protected]



点「好看」的人都变好看了哦
点赞 0

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.

点赞 0
阅读2+

We develop a system for modeling hand-object interactions in 3D from RGB images that show a hand which is holding a novel object from a known category. We design a Convolutional Neural Network (CNN) for Hand-held Object Pose and Shape estimation called HOPS-Net and utilize prior work to estimate the hand pose and configuration. We leverage the insight that information about the hand facilitates object pose and shape estimation by incorporating the hand into both training and inference of the object pose and shape as well as the refinement of the estimated pose. The network is trained on a large synthetic dataset of objects in interaction with a human hand. To bridge the gap between real and synthetic images, we employ an image-to-image translation model (Augmented CycleGAN) that generates realistically textured objects given a synthetic rendering. This provides a scalable way of generating annotated data for training HOPS-Net. Our quantitative experiments show that even noisy hand parameters significantly help object pose and shape estimation. The qualitative experiments show results of pose and shape estimation of objects held by a hand "in the wild".

点赞 0
阅读1+

Graph deep learning models, such as graph convolutional networks (GCN) achieve remarkable performance for tasks on graph data. Similar to other types of deep models, graph deep learning models often suffer from adversarial attacks. However, compared with non-graph data, the discrete features, graph connections and different definitions of imperceptible perturbations bring unique challenges and opportunities for the adversarial attacks and defences for graph data. In this paper, we propose both attack and defence techniques. For attack, we show that the discrete feature problem could easily be resolved by introducing integrated gradients which could accurately reflect the effect of perturbing certain features or edges while still benefiting from the parallel computations. For defence, we propose to partially learn the adjacency matrix to integrate the information of distant nodes so that the prediction of a certain target is supported by more global graph information rather than just few neighbour nodes. This, therefore, makes the attacks harder since one need to perturb more features/edges to make the attacks succeed. Our experiments on a number of datasets show the effectiveness of the proposed methods.

点赞 0
阅读1+

This paper studies the problems of vehicle make & model classification. Some of the main challenges are reaching high classification accuracy and reducing the annotation time of the images. To address these problems, we have created a fine-grained database using online vehicle marketplaces of Turkey. A pipeline is proposed to combine an SSD (Single Shot Multibox Detector) model with a CNN (Convolutional Neural Network) model to train on the database. In the pipeline, we first detect the vehicles by following an algorithm which reduces the time for annotation. Then, we feed them into the CNN model. It is reached approximately 4% better classification accuracy result than using a conventional CNN model. Next, we propose to use the detected vehicles as ground truth bounding box (GTBB) of the images and feed them into an SSD model in another pipeline. At this stage, it is reached reasonable classification accuracy result without using perfectly shaped GTBB. Lastly, an application is implemented in a use case by using our proposed pipelines. It detects the unauthorized vehicles by comparing their license plate numbers and make & models. It is assumed that license plates are readable.

点赞 0
阅读1+
Top