项目名称: 金属微腔效应提高聚合物并联太阳能电池效率的研究

项目编号: No.61275035

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 陈维友

作者单位: 吉林大学

项目金额: 85万元

中文摘要: 高效率聚合物太阳能电池是目前研究热点之一。目前限制效率提高的主要原因是单一的聚合物材料吸收光谱窄,对光子利用率不高。为了解决这些问题,我们制作了结构为FTO/TiO2/PCDTBT:PCBM/WO3/Ag/WO3/P3HT:ICBA/TiO2/Al的全可见光谱的并联太阳能电池。根据两种有源层材料的吸收范围对器件分割,底部半透明电池通过调整Ag和WO3的厚度增强600以下光的透射;顶电池中的Ag和Al组成的金属微腔在满足共振条件时,光学共振效应会增强腔内的光电场,提高有源层对入射光的吸收。我们以微腔效应理论研究为指导,从构建微腔结构、模拟器件内部光电场分布、提高中间连接层的光透过率以及保持底顶两个电池电压平衡等方面对并联电池进行系统的理论与实验研究。在强度为100mW/cm2的AM1.5G标准太阳光照下,电池的能量转化效率大于8%。

中文关键词: 微腔;并联;聚合物太阳能电池;光场分布;电流匹配

英文摘要: Highly efficient polymer solar cells have attracted more and more investigations.Currently, the narrow absorption spectrum of the polymer materials is the major restriction to obtain higher power conversion efficiency of the polymer solar cells. This phenomenon is attributed to a low utilization of photons. In order to settle this problem, we induce a new structure of parallel polymer solar cells that with an absorption spectrum cover the whole visible range, which is FTO/TiO2/PCDTBT: PCBM/WO3/Ag/WO3/P3HT:ICBA/TiO2/Al. According to the complementary absorption spectrum of the two active layer materials, changing the parameter of layers properly can improve the photos utilization. By adjusting the thicknesses of Ag electrode and WO3 hole transport layer of the bottom solar cell, the transmission of light, which wavelength is below 600nm,can be inhanced strongly. In the top solar cell, the two electrodes constitute a metal macrocavity structure. Such transmission light makes round trips between the two metal mirrors until the light waves became a multiple reflections between the metal mirrors, a stable standing wave formed. This optical resonance would lead to the maximum light absorption in the active layer, increase the utilization of photos and make a larger absorption coefficient. By using the theory investiga

英文关键词: Microcavity;in parallel;polymer solar cells;optical field distribution;current matching

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
《6G智能轨道交通白皮书》未来移动通信论坛
专知会员服务
31+阅读 · 2022年4月14日
工业人工智能驱动的流程工业智能制造
专知会员服务
93+阅读 · 2022年3月9日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
48+阅读 · 2021年12月6日
专知会员服务
103+阅读 · 2021年4月7日
专知会员服务
38+阅读 · 2021年2月8日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
37+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员